1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkinab [10]
3 years ago
12

A 15.0-m uniform ladder weighing 500 N rests against a frictionless wall. The ladder makes a 60.08 angle with the horizontal. (a

) Find the horizontal and vertical forces the ground exerts on the base of the ladder when an 800-N firefighter has climbed 4.00 m along the ladder from the bottom. (b) If the ladder is just on the verge of slipping when the firefighter is 9.00 m from the bottom, what is the coefficient of static friction between ladder and ground
Physics
1 answer:
grigory [225]3 years ago
7 0

Answer:

a)  fr = 266.92 N,   fy = 1300 N,  b)    μ = 0.36

Explanation:

a) This is a balancing act.

Let's write the rotational equilibrium relations, where the turning point is the bottom of the ladder and the counterclockwise rotations are positive

             -w x - W x₂ + R y = 0         (1)

usemso trigonometry to find distances

            cos 60.08 = x / 7.5

            x = 7.5 cos 60.08

            x = 3.74 m

fireman

           cos 60.08 = x₂ / 4

           x2 = 4 cos 60

           x2 = 2 m

wall support

           sin 60.08 = y / 15

           y = 15 are 60.08

           y = 13 m

we substitute in equation 1

           R y = w x + W x2

            R = (w x + W x2) / y

            R = (500 3.74 +800 2) / 13

            R = 266.92 N

now let's write the expressions for the translational equilibrium

X axis

           R -fr = 0

           R = fr

           fr = 266.92 N

Y Axis  

           Fy - w-W = 0

           fy = 500 + 800

           fy = 1300 N

b) ask the friction coefficient

the firefighter's distance is

          cos 60.08 = x₃ / 9.00

          x₃ = 9 cos 60

          x₃ = 5.28 m

from equation 1

          R = (w x + W x₃) / y

          R = 500 3.74 + 800 5.28) / 13

          R = 468.769 N

we saw that

          fr = R = 468.769

The expression for the friction force is

          fr = μ N

in this case the normal is the ratio to pesos

        N = Fy

       N = 1300 N

        μ N = fr

        μ = fr / N

        μ = 468,769 / 1300

         μ = 0.36

You might be interested in
How much of the Moon is always illuminated one time? Explain your answer.
Natalija [7]

Answer:

50% of it .

Explanation:

50% of it is illuminated by the Sun.

6 0
3 years ago
An electron in a television tube is accelerated uniformly from rest to a speed of 8.4\times 10^7~\text{m/s}8.4×10 ​7 ​​ m/s over
stich3 [128]

Answer:

P=3.42×10^-6 J/s

Explanation:

From the kinematics of motion with constant acceleration we know that :  

vf^2=vi^2+2*a(xf-xi)

Where :

• vf , vi, are the the final and the initial velocity of the electron  

• a is the acceleration of the electron  

• xf , xi are the final and the initial position of the electron .

Strategy for solving the problem : at first from the given information we calculate the acceleration of the electron.  

Givens: vf = 8.4 x 10^7 m/s , vi, = 0 m/s , xf = 0.025 m and xi = 0 m  

vf^2 =vi^2+2*a(xf-xi)

vf^2-vi^2=2*a(xf-xi)

2*a(xf-xi)= vf^2-vi^2

          a = (vf^2-vi^2)/2(xf-xi)

Pluging known information to get :

a = (vf^2-vi^2)/2(xf-xi)

  = 1.411 × 10^17

From the acceleration and the previous Eq. we can calculate the final velocity of the electron but a new position xf = 0.01 m  

so,

vf^2 =vi^2+2*a(xf-xi)

vf^2 =5.312× 10^7

From the following Eq. we can calculate the time elapsed in this motion .  

xf =xi+vi*t+1/2*a*t

xf =xi+vi*t+1/2*a*t

  t=√2(xf-xi)/a

 t=3.765×10^-10 s

now we can use the power P Eq.  

 P=W/Δt => ΔK/Δt  

Where: the work done W change the kinetic energy K of the electron ,

ΔK=Kf-Ki=>1/2*m*vf^2-1/2*m*vi^2

P=1/2*m*vf^2-1/2*m*vi^2/Δt

P=3.42×10^-6 J/s

6 0
3 years ago
A negatively charged particle is moving to the right, directly above a wire have a current flowing to the right. In which direct
Varvara68 [4.7K]

Answer:

C) upward

Explanation:

The problem can be solved by using the right-hand rule.

First of all, we notice at the location of the negatively charged particle (above the wire), the magnetic field produced by the wire points out of the page (because the current is to the right, so by using the right hand, putting the thumb to the right (as the current) and wrapping the other fingers around it, we see that the direction of the field above the wire is out of the page).

Now we can apply the right hand rule to the charged particle:

- index finger: velocity of the particle, to the right

- middle finger: direction of the magnetic field, out of the page

- thumb: direction of the force, downward --> however, the charge is negative, so we must reverse the direction --> upward

Therefore, the direction of  the magnetic force is upward.

3 0
3 years ago
Consider eight,eight-cubic centimeter (8 cm3) sugar cubes stacked so that they form a single 2 x 2 x 2 cube. How does the surfac
In-s [12.5K]
To find the surface area of a single cube we first nees to take the cube root of 8cm3 which is 2.

Now we know that the length of each side is 2 and we can find the area of one side by doing 2x2 which is 4.

To find the total surface area of one cube we do 4 times 6 side giving us a total of 24cm2.

To find the total surface area of the 8 individual cubes, we multiply 24cm2 by 8 to give us a total of 192cm2.

Now to find the total surface area of the one large cube, we know that each side of one of the small cubes is 4cm2 and the large cube is set up so that there are two levels of four cubes right on top of each other. So, the total area of each side of the large cube is 4cm2 times 4 which gives us 16cm2.

Then we multiply 16cm2 by 6 sides to give us a total surface area of 96cm2.

The ratio of the surface area of the single large cube comapred to the total surface area of the single cubes is 96:192

We can further simplify this ratio:

96:192

48:96

24:48

12:24

6:12

3:6

1:2
5 0
3 years ago
9. What is the gravitational potential energy of a 61.2 kg person standing on the roof of a 10-storey building? (Each storey is
kow [346]

Answer:

15009

Explanation:

PE = mgh

PE = 61.2(9.81)(10 * 2.50)

PE = 15009.3

3 0
3 years ago
Other questions:
  • Per single gallon of gas, Gina's vehicle can go 16 more miles than Amanda's vehicle. If the combined distance the vehicles can t
    6·1 answer
  • Sort the characteristics of solids liquids and gases into the correct colums
    10·1 answer
  • Heat gained minus work fine is equal to what?
    14·1 answer
  • Which statement does Einstein's theory promote about space and time?
    6·2 answers
  • A 1-kg iron frying pan is placed on a stove. The pan increases from 20°C to 250°C. If the same amount of heat is added to a pan
    6·1 answer
  • Where do scientists believe the missing carbon is going? Why are they not sure?
    5·1 answer
  • A projectile is shot a cliff of 20m high, at an angle of 60o with respect to the horizontal, and it lands on the ground 8 second
    13·1 answer
  • A heavy book is launched horizontally out a window from the first floor, a height, h, above the ground, with initial velocity, v
    7·1 answer
  • Plyometrics can help a person maintain cardiorespiratory fitness. Please select the best answer from the choices provided. T F
    11·2 answers
  • Camille knows that range of motion is very important. She is designing a weekly exercise program and is not sure where flexibili
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!