Answer:
8.75
Explanation:
First, find the force of friction.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.9 m/s)² = F (1.4 m)
F = 11.7 N
Next, find the distance at the new velocity.
Kinetic energy = work done by friction
½ mv² = Fd
½ (3.9 kg) (2.5 × 2.9 m/s)² = (11.7 N) d
d = 8.75 m
<span>3.92 m/s^2
Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so
0.4 * 9.8 m/s^2 = 3.92 m/s^2
If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so
20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N
Multiply by the coefficient of static friction, giving
196 N * 0.4 = 78.4 N
So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass
78.4 N / 20.0 kg
= 78.4 kg*m/s^2 / 20.0 kg
= 3.92 m/s^2
And you get the same result.</span>
<span>Resilience is the amount of energy that can be put into a volume of material and still be stored elastically. ie When the energy goes away, the material regains its undeformed shape. The Mod of R is the amount that can be stored by a unit volume of that material. The Mod of R is heavily related to Youngs Modulus.</span>
Thermal energy is added to four identical<span> 1.0 kg </span>samples of water<span> at room temperature. Which of the following </span>increases in each sample<span>? average charge of an electron; average density of </span>a<span> nucleus; average mass of </span>a<span> proton; average speed of </span>a<span> molecule. Your answer: -. Answer: D - average speed of </span>a<span>molecule.</span>