Answer:You're answer is D: it is converted to kinetic energy
Explanation:
During a change of phase, the average kinetic energy of the molecules stays the same, but the average potential energy changes. ... My interpretation is that during a phase change, the temperature remains equal, but the kinetic energy of its particles increase/decrease.
LINK:
https://chemistry.stackexchange.com/questions/82163/clarification-of-kinetic-energy-during-phase-change
To remove one electron from singly ionized helium, will require approximately 54.4 eV or 8.72 1020 J of energy.
The amount of energy required by an isolated, gaseous molecule in the electronic state of the ground to absorb in order to discharge an electron and produce a cation has been known as the ionization energy. The amount of energy required for every atom in a mole to drop one electron is most often given as kJ/mol.
Anything that causes electrically neutral atoms and molecules to gain or lose electrons in order to become electrically charged atoms as well as molecules .
Therefore, the "To remove one electron from singly ionized helium, will require approximately 54.4 eV or 8.72 1020 J of energy."
To know more about electron
brainly.com/question/14135172
#SPJ4
The molarity is a concentration unit which defined as the number of moles of solute divided by the number of liters of solution. So the molarity of the solution is 3/2=1.5 mol/L.
Pressure: when the external pressure is:
less than one atmosphere, the boiling point of the liquid is lower than its normal boiling point.
equal to one atmosphere, the boiling point of a liquid is called the normal boiling point.
greater than one atmosphere, the boiling point of the liquid is greater than its normal boiling point.
Answer:
Mass= 2.77g
Explanation:
Applying
P=2.09atm, V= 1.13L, R= 0.082, T= 291K, Mm of N2= 28
PV=nRT
NB
Moles(n) = m/M
PV=m/M×RT
m= PVM/RT
Substitute and Simplify
m= (2.09×1.13×28)/(0.082×291)
m= 2.77g