Answer:
<h2>0.94 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>0.94 g/mL</h3>
Hope this helps you
Answer:
The melting point of a substance is the temperature at which it change state from solid to liquid is called crystallization point.
Answer:
6.4 g BaSO₄
Explanation:
You have been given the molarity and the volume of the solution. To find the mass of the solution, you need to (1) find the moles BaSO₄ (via the molarity ratio) and then (2) convert moles BaSO₄ to grams BaSO₄ (via the molar mass). It is important to arrange the conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs to reflect the sig figs of the given values.
Molarity (mol/L) = moles / volume (L)
(Step 1)
55 mL / 1,000 = 0.055 L
Molarity = moles / volume <----- Molarity ratio
0.5 (mol/L) = moles / 0.055 L <----- Insert values
0.0275 = moles <----- Multiply both sides by 0.055
(Step 2)
Molar Mass (BaSO₄): 137.33 g/mol + 32.065 g/mol + 4(15.998 g/mol)
Molar Mass (BaSO₄): 233.387 g/mol
0.0275 moles BaSO₄ 233.387 g
--------------------------------- x ------------------- = 6.4 g BaSO₄
1 mole
Answer:
Explanation:
Density is m/V. Also, 1 liter = 1000
. So, we get 0.890/(5*1000) =
g/cm^3. You can convert this to kg/m^3 as well by multiplying it by 10. Depends which one you want.
Answer:
0. 414
Explanation:
Octahedral interstitial lattice sites.
Octahedral interstitial lattice sites are in a plane parallel to the base plane between two compact planes and project to the center of an elementary triangle of the base plane.
The octahedral sites are located halfway between the two planes. They are vertical to the locations of the spheres of a possible plane. There are, therefore, as many octahedral sites as there are atoms in a compact network.
The Octahedral interstitial void ratio range is 0.414 to 0.732. Thus, the minimum cation-to-anion radius ratio for an octahedral interstitial lattice site is 0. 414.