Answer:
115g/mol
Explanation:
To get the molar mass, we know that the it is equal to the mass divided by the number of moles. We have the mass but we do not have the number of moles.
We get this by working through the solution information. Firstly, we need to know the number of moles in 750ml for a molarity of 0.29m
Now, since 0.29 moles is present in 1000ml, x moles will be present in 750ml
The value of x is obtained as follows:
x = (750 * 0.29)/1000 = 0.2175 moles
Now since we have the number of moles, we can then obtain the molar mass.
Molar mass = mass/number of moles = 25.0g/0.2175 = 114.94 approximately 105g/mol
Answer:
Population of duck and frog will change with the change
Explanation:
The complete question is
Scientists are studying animals in a large lake area. In this lake area, both owls and raccoons eat ducks, and ducks eat frogs. The data shows that recently the size of the raccoon population decreased. How will the decrease in the raccoon population affect the other populations? Be sure to explain whether the owl population, the duck population, and the frog population will change, and why.
- Owl population will change
-
Duck population will change
-
Frog population will change
Solution
Raccoon eat duck and duck eat frog. Now if the population of Raccoon decreases then the number of predators of duck will decrease thereby increasing the population of duck.
The higher will be the number of ducks, the more frogs they will consume thereby decreasing the population of frogs
Hence both the population of duck and frog will change with the change
Option E, Real gas particles have more complex interactions than ideal gas particles.
In ideal gases, there is absolutely no interaction between any atoms. At all. Atoms simply don't bump into each other in ideal gases.
Obviously, you know that's unrealistic. In real gases, atoms collide into each other all the time.
-T.B.
Answer:
The bismuth sample.
Explanation:
The specific heat
of a substance (might not be a metal) is the amount of heat required for heating a unit mass of this substance by unit temperature (e.g.,
.) The formula for specific heat is:
,
where
is the amount of heat supplied.
is the mass of the sample.
is the increase in temperature.
In this question, the value of
(amount of heat supplied to the metal) and
(mass of the metal sample) are the same for all four metals. To find
(change in temperature,) rearrange the equation:
,
.
In other words, the change in temperature of the sample,
can be expressed as a fraction. Additionally, the specific heat of sample,
, is in the denominator of that fraction. Hence, the value of the fraction would be the largest for sample with the smallest specific heat.
Make sure that all the specific heat values are in the same unit. Find the one with the smallest specific heat: bismuth (
.) That sample would have the greatest increase in temperature. Since all six samples started at the same temperature, the bismuth sample would also have the highest final temperature.