Answer:
4Fe + 3O₂ → 2Fe₂O₃
Explanation:
Fe → ²⁺
O → ²⁻
But Iron III is Fe³⁺
So we have Fe³⁺ and O²⁻, the formula for the oxide must be Fe₂O₃ so the equation can be:
4Fe + 3O₂ → 2Fe₂O₃
Good laboratory technique demands clean glassware because the most carefully executed piece of work may give an erroneous result if dirty glassware is used. In all instances, glassware must be physically and chemically clean and in many cases, it must be bacteriologic-ally clean or sterile.
Answer:
as u should. candy ain't even that tempting >^<
The volume of a 14.00g of nitrogen at 5.64atm and 315K is 4.59L.
<h3>How to calculate volume?</h3>
The volume of an ideal gas can be calculated using the following ideal gas equation formula;
PV = nRT
Where;
- P = pressure (atm)
- V = volume (L)
- n = number of moles
- R = gas law constant
- T = temperature
An ideal gas is a hypothetical gas, whose molecules exhibit no interaction, and undergo elastic collision with each other and with the walls of the container.
The number of moles in 14g of nitrogen can be calculated as follows:
moles = 14g ÷ 14g/mol = 1mol
5.64 × V = 1 × 0.0821 × 315
5.64V = 25.86
V = 25.86 ÷ 5.64
V = 4.59L
Therefore, 4.59L is the volume of the gas
Learn more about volume at: brainly.com/question/12357202
#SPJ1
Answer:
The maximum mass of carbon dioxide that could be produced by the chemical reaction is 70.6gCO_{2}
Explanation:
1. Write down the balanced chemical reaction:

2. Find the limiting reagent:
- First calculate the number of moles of hexane and oxygen with the mass given by the problem.
For the hexane:

For the oxygen:

- Then divide the number of moles between the stoichiometric coefficient:
For the hexane:

For the oxygen:

- As the fraction for the oxygen is the smallest, the oxygen is the limiting reagent.
3. Calculate the maximum mass of carbon dioxide that could be produced by the chemical reaction:
The calculations must be done with the limiting reagent, that is the oxygen.
