The statement: Mass affects how fast an object falls is true.
Given that:
k = 500 n/m,
work (W) = 704 J
spring extension (x) = ?
we know that,
Work = (1/2) k x²
704 = (1/2) × 500 × x²
x = 1.67 m
A spring stretched for 1.67 m distance.
The answer would be option D "a ball sitting on a shelf." Potential energy is the amount of energy a object has while it's at rest.. (or not moving) Kinetic energy is how much energy a object is while it's moving. So in this case it's option D because a ball sitting on a shelf isn't moving therefore it has potential energy. It's not option A because thats a example of kinetic energy since how the roller coaster is moving. It's not option B because it's kinetic energy because the bike is moving. It's also not option C because it's kinetic energy because the bird is moving.
Hope this helps!
Answer:
b. Friction decreased when he went from pavement to ice and then increased two more times.
Explanation:
Frictional force depends on the normal force of the surface and a friction coefficient.

Since we're talking about the same car, the value of
will remain constant whereas μ will represent the change in the frictional coefficient of the surface. Now we consider the different surfaces, cars will slide in an icy road which means that the frictional coefficient is smaller than the pavement.
After Joshua returns to the pavement road, the resulting frictional force increases and will do so one more time when he reaches the gravel road. Gravel roads have greater frictional coefficients than pavement roads which means the frictional force will increase a second time.
Answer:
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Explanation:
For this exercise we must use conservation of energy
the electric potential energy is
U =
for the proton at x = -1 m
U₁ =
for the electron at x = 1 m
U₂ =
starting point.
Em₀ = K + U₁ + U₂
Em₀ =
final point
Em_f =
energy is conserved
Em₀ = Em_f
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(
)
we substitute the values
½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [
) = 9 109 (1.6 10-19) ²(
)
2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ (
)
2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷
r₂² -1 = (4.443 10⁸)⁻¹
r2 =
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m