Answer: 1896.55J/kg°C
Explanation:
The quantity of Heat Energy (Q) required to heat a material depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Since,
Q = 1320 joules
Mass of material = 5.61kg
C = ? (let unknown value be Z)
Φ = 0.124°C
Then, Q = MCΦ
1320J = 5.61kg x Z x 0.124°C
1320J = 0.696kg°C x Z
Z = (1320J / 0.696kg°C)
Z = 1896.55 J/kg°C
Thus, the specific heat of the material is 1896.55J/kg°C
<span>Assuming that the momenta of the two pieces are equal: when they have equal velocities, then
the masses of the two pieces are also equal.
Since there is no force from outside of the system, the center of mass moves on with the same velocity as before the equation. So the two pieces must fly at the side side of the mass center, i.e., they must always be at 90° to the side of the mass center. Otherwise it would not be the mass center, respectively the pieces would not have equal velocities.
This is only possible, when the angle of their velocity with the initial direction is 60°.
Because, cos (60°) = 1/2 = v/(2v).</span>
Answer:
a planet
Explanation:
a planet is one which exerts these properties and therefore is the answer
Answer:
The handrails must be approximately 10.63 meters long
Explanation:
The given parameters are;
The height of the bleachers, h = 8 m
The depth of the bleachers, d = 7 m
The length of the hand rails to go along the bleachers from bottom to top is given by Pythagoras' Theorem as follows;
The length of the hand rail = √(d² + h²)
∴ The length of the hand rail = √(7² + 8²) = √113 ≈ 10.63
In order for the handrails to go along the bleachers from top to bottom, they must be approximately 10.63 meters long.
Number a is a correct one