Answer:
When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon)
A photon is a quantum of EM radiation. Its energy is given by E = hf and is related to the frequency f and wavelength λ of the radiation by. E=hf=hcλ(energy of a photon) E = h f = h c λ (energy of a photon) , where E is the energy of a single photon and c is the speed of light.
Answer:
a) 1.73*10^5 J
b) 3645 N
Explanation:
106 km/h = 106 * 1000/3600 = 29.4 m/s
If KE = PE, then
mgh = 1/2mv²
gh = 1/2v²
h = v²/2g
h = 29.4² / 2 * 9.81
h = 864.36 / 19.62
h = 44.06 m
Loss of energy = mgΔh
E = 780 * 9.81 * (44.06 - 21.5)
E = 7651.8 * 22.56
E = 172624.6 J
Thus, the amount if energy lost is 1.73*10^5 J
Work done = Force * distance
Force = work done / distance
Force = 172624.6 / (21.5/sin27°)
Force = 172624.6 / 47.36
Force = 3645 N
I think Im gonna have to go with C 6.00 T/s but Im not sure
Answer:

Explanation:
Not considering any type of losses in the transformer, the input power in the primary is equal to the output power in the secondary:

So:

Where:

Solving for 

Replacing the data provided:

Answer:
Blue is produced when mixing cyan and magenta ( removing red and green)