Answer:
102.26 moles of helium were required to Fill the Goodyear Blimp
Explanation:
To solve this question we need to use combined gas law:
PV = nRT
<em>Where P is pressure, V is volume of gas (2500L), n are moles of gas (Our incognite), R is gas constant (0.082atmL/molK) and T is absolute temperature</em>
<em />
Assuming atmospheric condition we can write P = 1atm and T = 25°C = 298.15K
Replacing:
PV/RT = n
1atm*2500L / 0.082atmL/molK*298.15K = n
<h3>102.26 moles of helium were required to Fill the Goodyear Blimp</h3>
<em />
There are one antibonding molecular orbitals present in molecular orbital model of c.
The cyclobutadiene has a pi system comprised of four individual atomic p - orbital and thus should have a four pi molecular orbitals. The compound is the prototypical antiaromatic hydrocarbon with 4
- electrons . Its rectangular structure is the result of jahn teller reaction which disorder the molecule and lowers its symmetry , converting the triplet to a singlet ground state. It is a small annulene . The delocalisation energy of the
electrons of the cyclobutene is predicted to be zero .
To learn more about antibonding molecular orbitals click here
brainly.com/question/14970060
#SPJ4
Igneous rock that forms from magma that cools slowly within Earth’s crust is likely to have larger crystals and a coarse-grained texture.
Igneous rock that forms from lava that cools quickly on Earth’s surface is known as extrusive igneous rock. Another word for extrusive is volcanic.
Because the sample of igneous rock formed on Earth’s surface, it is extrusive. Because it’s composed of mostly light-colored minerals, it is likely felsic.
Because the sample of igneous rock formed within Earth’s crust, it is intrusive. Because it contains a very high concentration of dark-colored, high-density minerals, it is likely ultramafic.
The fact that gabbro is an igneous rock suggests that it was formed from the cooling and crystallization of magma. The fact that it is intrusive means that it formed within Earth’s crust. The fact that it’s mafic suggests that it contains a high concentration of dark-colored, high-density minerals.
Answer:
Increasing the surface area of the reactants
Explanation:
An increase in surface area of the reactant will always cause an increase in the rate of reaction. This is so because, an increase in the surface area of the reactant will cause the reactant particles to collide effectively thereby bringing about an increase in the reaction rate.
Collision theory suggests that for a reaction to occur, the reactant particles must collide with the right orientation. As the surface area of the reactants are increased, the reactants particles collide more with the right orientation bringing about definite increase in the rate of reaction.
Kinetic energy is the energy possessed by an object due to its motion. If an object is moving, then it has kinetic energy. If an object has kinetic energy, then it is moving. Many students confuse kinetic energy with potential energy.