Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Answer:
I remember doing this in 7th,
1. D
2. B or D, more leaning on B though
3. A
Answer : Electron affinity (Eea) of an atom or molecule can be defined as the amount of energy released or spent when an electron is being added to a neutral atom or molecule in the gaseous state to form a negative ion.
Chlorine is considered to be the element which has highest electron affinity in the modern periodic table.
The general formula is X +
---->
+ energy
It is found that nonmetals have more positive Eea than metals.
Electron affinity increases across the group from left to right in the modern periodic table. Elements with small nucleus have high electron affinity.
Balanced equation for the above reaction is as follows;
Mg(OH)₂ + 2HCl ---> MgCl₂ + 2H₂O
stoichiometry of Mg(OH)₂ to MgCl₂ is 1:1
mass of Mg(OH)₂ reacted - 1.82 g
number of moles of Mg(OH)₂ - 1.82 g/ 58.3 g/mol = 0.0312 mol
number of Mg(OH)₂ moles reacted - number of MgCl₂ moles formed
number of MgCl₂ moles formed - 0.0312 mol
mass of MgCl₂ formed - 0.0312 mol x 95.2 g/mol = 2.97 g
mass of MgCl₂ formed - 2.97 g
Answer:
b. 3.66x10²³ atoms of chromium.
Explanation:
First we calculate how many moles are there in 31 grams of chromium, using its molar mass:
- Molar Mass of Chromium = 51 g/mol (This can be found on any periodic table)
- 31 g ÷ 51 g/mol = 0.608 mol
Then we <u>calculate how many atoms are there in 0.608 moles</u>, using <em>Avogadro's number</em>:
- 0.608 mol * 6.023x10²³ atoms/mol = 3.66x10²³ atoms
The correct answer is thus option b. 3.66x10²³ atoms of chromium.