Answer:
P' = 41.4 mmHg → Vapor pressure of solution
Explanation:
ΔP = P° . Xm
ΔP = Vapor pressure of pure solvent (P°) - Vapor pressure of solution (P')
Xm = Mole fraction for solute (Moles of solvent /Total moles)
Firstly we determine the mole fraction of solute.
Moles of solute → Mass . 1 mol / molar mass
20.2 g . 1 mol / 342 g = 0.0590 mol
Moles of solvent → Mass . 1mol / molar mass
60.5 g . 1 mol/ 18 g = 3.36 mol
Total moles = 3.36 mol + 0.0590 mol = 3.419 moles
Xm = 0.0590 mol / 3.419 moles → 0.0172
Let's replace the data in the formula
42.2 mmHg - P' = 42.2 mmHg . 0.0172
P' = - (42.2 mmHg . 0.0172 - 42.2 mmHg)
P' = 41.4 mmHg
An atom is the smallest part of all matter.
<span>I'm assuming its cause the total mass is the same, changes between phases are physical... solid ice and liquid water have the same mass</span>
Given data: <span>molar mass = 180.2 g/mol in 920.0 ml of water at 25 °c.
</span><span>the vapor pressure of pure water at 25 °c is 23.76 mm hg.
</span>Asked: <span>the vapor pressure of a solution made by dissolving 109 grams of glucose
</span><span>
Solution:
moles glucose = 109 g/ 180.2 g/mol=0.605
mass water = 920 mL x 1 g/mL = 920 g
moles water = 920 g/ 18.02 g/mol=51.1
mole fraction water = 51.1 / 51.1 + 0.605 =0.988
vapor pressure solution = 0.988 x 23.76 = 23.47 mm Hg</span>
Rutherford found protons
Thompson found electrons and
Bohr crewed the Bohr model the most commen model of the atom used today
This really a your opinion question but my favor is Bohr