Possibly wet and unstable
Here we apply the Clausius-Clapeyron equation:
ln(P₁/P₂) = ΔH/R x (1/T₂ - 1/T₁)
The normal vapor pressure is 4.24 kPa (P₁)
The boiling point at this pressure is 293 K (P₂)
The heat of vaporization is 39.9 kJ/mol (ΔH)
We need to find the vapor pressure (P₂) at the given temperature 355.3 K (T₂)
ln(4.24/P₂) = 39.9/0.008314 x (1/355.3 - 1/293)
P₂ = 101.2 kPa
Answer:
There are
1.479
×
10
−
13
concentration of hydrogen ions
m
o
l
L
.
Explanation:
Because pH is a logarthmic scale, we can use the formula:
[
H
+
]
=
10
-pH
. Where...
=>
[
H
+
]
is the concentration of hydrogen ions in the solution.
=>
p
H
is the pH of the solution.
=> Where
10
is the base of the power - it's a logarithm formula.
We can now just sub in the values and solve for [
H
+
]
.
[
H
+
]
=
10
-pH
=
10
−
(
12.83
)
=
1.479108388
×
10
−
13
We can round (if required) to
1.479
×
10
−
13
.
Thus, there are
1.479
×
10
−
13
concentration of hydrogen ions
m
o
l
L
.
Hope this helps :)