Remember that like charges repel each other. That is, positive repels positive and negative repels negative. Similar to how the north poles of magnets repel each other and south poles repel. However, at the atomic scale, protons, which have positive charge, are more influenced by the "Strong Force," which binds them close together. If they were to be separated ever so slightly, then the electromagnetic force would take over and they would repel each other like you'd expect.
Neutrons are also held together via the Strong Force, but don't have a charge so when separated, don't have an electromagnetic force pushing them away from each other.
However, electrons act differently. There is no "Strong Force" just the electromagnetic force. So, they keep a great distance from each other.
So in an atom, protons and neutrons stay close to each other, taking up little volume, while electrons take up a lot of volume.
BTW, the reason why electrons and protons act differently when they are close together is because protons are made up of smaller particles the carry this Strong Force. For electrons, there is no smaller constituent. And therefore, all you have is the electromagnetic force to influence it. That's it.
Hope that helps.
Activation Energy is the amount of energy needed to get a reaction started.
Answer: 2.49×10^-3 N/m
Explanation: The force per unit length that two wires exerts on each other is defined by the formula below
F/L = (u×i1×i2) / (2πr)
Where F/L = force per meter
u = permeability of free space = 1.256×10^-6 mkg/s^2A^2
i1 = current on first wire = 57A
i2 = current on second wire = 57 A
r = distance between both wires = 26cm = 0.26m
By substituting the parameters, we have that
Force per meter = (1.256×10^-6×57×57)/ 2×3.142 ×0.26
= 4080.744×10^-6/ 1.634
= 4.080×10^-3 / 1.634
= 2.49×10^-3 N/m
The Mercury's mass for the given acceleration due to gravity is 0.3152 x 10²⁴ kg.
The ratio of the calculated and accepted value of the Mercury's mass is 0.95.
<h3>What is mass?</h3>
Mass is the amount of matter present in the object.
The mass of the object is always constant, anywhere it is on the Earth or Moon or any other planet.
Given is the acceleration due to gravity of Mercury planet at North pole is g = 3.698 m/s² and the radius of Mercury planet is 2440 km.
The acceleration due to gravity is related with mass as
g = GM/R²
Substitute the values, we have
3.698 = 6.67 x 10⁻¹¹ x M/(2440 x1000)³
M = 2.2016 x 10¹³ / 6.67 x 10⁻¹¹
M = 0.3152 x 10²⁴ kg
Thus, the mercury's mass is 0.3152 x 10²⁴ kg.
(b) Accepted value of Mercury's mass is 3.301 x 10²³ kg
Ratio of the value of mass calculated and accepted is
Mcalc/M accep = 0.3152 x 10²⁴ kg / 3.301 x 10²³ kg
= 0.95
Thus, the ratio is 0.95
Learn more about mass.
brainly.com/question/19694949
#SPJ1
answer: c
explanation: it's job is to store and release charge