Answer:
F = 6.27 x 10 ¹⁹ N
Explanation:
Given
m₁ = 92 kg, m₂ = 46 kg, % = 0.04% N = 6.022 x 10²³ Z = 18, e = 1.6 x 10 ⁻¹⁹ C, M = 0.018 kg/mol
q₁ = % * [m * N * A * e / M ]
q₁ = 0.0004 * [ ( 92 kg * 6.022 x 10²³ * 18 * 1.6 x 10 ⁻¹⁹ ) / (0.018 kg/mol ) ]
q₁ = 3.54 x 10⁶ C
q₂ = 0.0004 * [ ( 46 kg * 6.022 x 10²³ * 18 * 1.6 x 10 ⁻¹⁹ ) / (0.018 kg/mol ) ]
q₂ = 1.773 x 10⁶ C
Now to determine the electrostatic force con use the equation
F = K * q₁ * q₂ / d²
K = 8.99 x 10 ⁹
F = 8.99 x 10 ⁹ * 3.54 x 10⁶ C * 1.773 x 10⁶ C / (30m)²
F = 6.27 x 10 ¹⁹ N
Answer:
hope it helps...
Explanation:
The Principle of Moments states that when a body is balanced, the total clockwise moment about a point equals the total anticlockwise moment about the same point.
Answer:
Stars are forming in the spiral arms so there are high mass, hot, blue stars in the arms.
Explanation:
To determine the velocity of the ball falling, we need to use one kinematic equation which will allow as to calculate for the height of the skyscraper. This formula is expressed as:
y = v0t + at^2 / 2
v0 = 0 since it started at rest
a = g since it acts upon the gravitational force
t = 5 s
y = (9.81)(5)^2 / 2
y = 122.625 m
To obtain velocity we divide the height with time,
v = 122.625 / 5 = 24.53 m/s
closest would be option C.