<span>The reason that the balloon will stick to the wall is because the negative charges in the balloon will make the electrons in the wall move to the other side of their atoms and this leaves the surface of the wall positively charged.</span>
Answer:
v₂=- 34 .85 m/s
v₁=0.14 m/s
Explanation:
Given that
m₁=70 kg ,u₁=0 m/s
m₂=0.15 kg ,u₂=35 m/s
Given that collision is elastic .We know that for elastic collision
Lets take their final speed is v₁ and v₂
From momentum conservation
m₁u₁+m₂u₂=m₁v₁+m₂v₂
70 x 0+ 0.15 x 35 = 70 x v₁ + 0.15 x v₂
70 x v₁ + 0.15 x v₂=5.25 --------1
v₂-v₁=u₁-u₂ ( e= 1)
v₂-v₁ = -35 --------2
By solving above equations
v₂=- 34 .85 m/s
v₁=0.14 m/s
Answer:
a) 2.063*10^-4
b) 1.75*10^-4
Explanation:
Given that: d= 1.628 mm = 1.628 x 10-3 I= 12 mA = 12.0 x 10-8 A The Cross-sectional area of the wire is:

a) <em>The Potential difference across a 2.00 in length of a 14-gauge copper </em>
<em> wire: </em>
L= 2.00 m
From Table Copper Resistivity
= 1.72 x 10-8 S1 • m The Resistance of the Copper wire is:

=0.0165Ω
The Potential difference across the copper wire is:
V=IR
=2.063*10^-4
b) The Potential difference if the wire were made of Silver: From Table: Silver Resistivity p= 1.47 x 10-8 S1 • m
The Resistance of the Silver wire is:

=0.014Ω
The Potential difference across the Silver wire is:
V=IR
=1.75*10^-4
Answer:
Scientists plan to release a space probe that will enter the atmosphere of a gaseous planet. The temperature of the gaseous planet increases linearly with the height of the atmosphere as measured from the top of a visible boundary layer, defined as 0 kilometers in altitude. The instruments on board can withstand a temperature of 601 K. At what altitude will the probe's instruments fail? A. 50 kilometers B. 80 kilometers C. 83 kilometers D. 100 kilometers E. 111 kilometers
Explanation:
A. 50 kilometers
The answer is X. I hope this helped