From britaññica it said time and money. They didn’t have either to switch over from the industrial period and never did. Also from my own person reasoning i think most of the world uses not US customary, so to make stuff more accessible. hope this helps!
Answer:
ω = 3.61 rad/sec
Explanation:
Firstly, we should know that the bug will not slip if friction can provide sufficient opposing force.
μmg = mv^2/r = mω^2r
Thus;
μg = ω^2r
ω^2 = μg/r
ω = √(μg/r)
ω = √(0.321 * 9.8)/0.241
ω = √(13.05)
= 3.61 rad/sec
Answer:
The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
Explanation:
Given that,
Mass of object = 5 kg
Speed = 3 m/s
Mass of stationary object = 3 kg
Moving object deflected = 30°
Stationary object deflected = 31°
We need to calculate the velocity of each ball after collision
Using conservation of momentum
Along x-axis

Put the value into the fomrula


....(I)
Along y -axis

Put the value into the formula

...(II)
From equation (I) and (II)


Put the value of v₁ in equation (I)



Hence, The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
The answer & explanation for this question is given in the attachment below.