Dmitri Mendeleev
<span> Dmitri Mendeleev and Lothar Meyer individually came up with their own periodic law "when the elements are arranged in order of increasing atomic mass,
certain sets of properties recur periodically.</span>
The initial mass of sodium hydroxide is 3.3 g (answer C)
<u><em>calculation</em></u>
Step 1 : find the moles of iron (ii) hydroxide ( Fe(OH)₂
moles = mass÷ molar mass
from periodic table the molar mass of Fe(OH)₂ = 56 + [16 +1]2 = 90 g/mol
moles is therefore = 3.70 g÷ 90 g/mol = 0.041 moles
Step 2: use the mole ratio to calculate the moles of sodium hydroxide (NaOH)
from given equation NaOH : Fe(OH)₂ is 2 :1
therefore the moles of NaOH = 0.041 x 2 = 0.082 moles
Step 3: find mass of NaOH
mass = moles x molar mass
from the periodic table the molar mass of NaOH = 23 +16 +1 = 40 g/mol
mass = 0.082 moles x 40 g/mol = 3.3 g ( answer C)
Answer:
<h2>F=Gm1m2r=G×1×11=G</h2>
Explanation:
<h2>______________________________</h2>
<h2>(*˘︶˘*).。*♡</h2>
<h2>
<em><u>PLEASE</u></em><em><u> MARK</u></em><em><u> ME</u></em><em><u> BRAINLIEST</u></em><em><u> AND</u></em><em><u> FOLLOW</u></em><em><u> M</u></em><em><u> E</u></em><em><u> LOTS</u></em><em><u> OF</u></em><em><u> LOVE</u></em><em><u> FROM</u></em><em><u> MY</u></em><em><u> HEART</u></em><em><u> AND</u></em><em><u> SOUL</u></em><em><u> DARLING</u></em><em><u> TEJASWINI</u></em><em><u> SINHA</u></em><em><u> HERE</u></em><em><u> ❤️</u></em></h2>
Answer:
Explanation:
From the information given:
Mass of carbon tetrachloride = 5 kg
Pressure = 1 bar
The given density for carbon tetrachloride = 1590 kg/m³
The specific heat of carbon tetrachloride = 0.84 kJ/kg K
From the composition, the initial volume of carbon tetrachloride will be:
= 0.0031 m³
Suppose
is independent of temperature while pressure is constant;
Then:
The change in volume can be expressed as:





However; the workdone = -PdV

W = - 7.6 J
The heat energy Q = Δ h


Q = 84 kJ
The internal energy is calculated by using the 1st law of thermodynamics; which can be expressed as;
ΔU = ΔQ + W
ΔU = 84 kJ + ( -7.6 × 10⁻³ kJ)
ΔU = 83.992 kJ