Answer:
Low energy waves have <u>a long wavelength.</u>
Explanation:
Energy of wave is directly related to the frequency while it is inversely proportional to the wavelength.
If any wave have high energy it will have high frequency and smaller wavelength.
If the wave have lower energy then it will have lower frequency and higher wavelength.
Mathematical relationship:
E = h. f
E = h. c/λ
E= energy
h = planck's constant
f = frequency
c = speed of light
λ = wavelength
Answer : The 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Explanation :
Galvanic cell : It is defined as a device which is used for the conversion of the chemical energy produces in a redox reaction into the electrical energy. It is also known as the voltaic cell or electrochemical cell.
In the galvanic cell, the oxidation occurs at an anode which is a negative electrode and the reduction occurs at the cathode which is a positive electrode.
We are taking the value of standard reduction potential form the standard table.
![E^0_{[Ag^{+}/Ag]}=+0.80V](https://tex.z-dn.net/?f=E%5E0_%7B%5BAg%5E%7B%2B%7D%2FAg%5D%7D%3D%2B0.80V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)
In this cell, the component that has lower standard reduction potential gets oxidized and that is added to the anode electrode. The second forms the cathode electrode.
The balanced two-half reactions will be,
Oxidation half reaction (Anode) : 
Reduction half reaction (Cathode) : 
Thus the overall reaction will be,

From this we conclude that, 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Hence, the 'Ag' is produced at the cathode electrode and 'Cu' is produced at anode electrode under standard conditions.
Answer:
the reaction will shift towards the “heat”—shifts to the left
Explanation:
To summarize:
o If temperature increases (adding heat), the reaction will shift away from the “heat” term and go in the
endothermic direction.
o If temperature decreases (removing heat), the reaction will shift towards the “heat” term and go in the
exothermic direction.
o NOTE: The endothermic direction is always away from the “heat” term and the exothermic direction is
towards the “heat” term.
Therefore the reaction will shift towards the “heat”—shifts to the left
Answer:
carbon
Explanation:
because it is an allotrope of carbon
Two independent variables could change at the same time, and you would not know which variable affected the dependent variable