In the case of an emergency where you might not have enough time to read several lines of writing, not to mention trying to find the hazard warnings when the whole bottle is probably covered in writing, it is much easier to locate and read universal hazard symbols.
One mole of water weighs 18 grams. H₂O is composed of 2H= 2 and 1 0=16 adding gives you 18. number of moles= mass/ Relative Molecular Mass
Therefore, mass= Relative Molecular Mass×number of moles
= 18×5 moles
= 90 grams
Answer:
614 034 kg
Explanation:
n = m/Mm
m = n * Mm
Mm(MgSO4) = 1 * 24.3 * 1 * 32.1 * 4 * 16 = 49921.92
m = 12.3 * 49921.92
m = 614 034 kg
Answer: -
100 mm Hg
Explanation: -
P 1 =400 mm Hg
T 1 = 63.5 C + 273 = 336.5 K
T 2 = 34.9 C + 273 = 307.9 K
ΔHvap = 39.3 KJ/mol = 39.3 x 10³ J mol⁻¹
R = 8.314 J ⁻¹K mol⁻¹
Now using the Clausius Clapeyron equation
ln (P1 / P2) = ΔHvap / R x (1 / T2 - 1 / T1)
Plugging in the values
ln (400 mm/ P₂) = (39.3 x 10³ J mol⁻¹ / 8.314 J ⁻¹K mol⁻¹) x (
- 
= 1.38
P₂ = 100 mm Hg