Answer:
It is mentioned that the student is mixing chemicals A and B and observes the time taken for the color to change. However, in the experiment, it is noticed that the student has repeated the procedure five times and each time he or she is modifying the concentration of chemical B. Thus, it is clear that the concentration of chemical B is the independent variable in the experiment. An independent variable is illustrated as the variable, which is controlled or modified in the experiment.
Answer:
class sum (
public static void sumofvalue (int m, int n, int p)
{
System.out.println(m);
System.out.println(n);
System.out.println(p);
int SumValue=m+n+p;
System.out.println("Average="+Sumvalue/3);
}
)
Public class XYZ
(
public static void main(String [] args)
{
sum ob=new sum();
int X=3;
int X=4;
int X=5;
ob.sumofvalue(X,Y,Z);
int X=7;
int X=8;
int X=10;
ob.sumofvalue(X,Y,Z);
}
)
Explanation:
The above program is made in Java, in which first we have printed value in a separate line. After that, the average value of those three values has been printed according to the question.
The processing of the program is given below in detail
* The first one class named 'sum' has been created which contains the function to print individual value and the average of those three values.
* In seconds main class named 'XYZ', the object of that the above class had been created which call the method of the above class to perform functions.
* In the main class values are assigned to variables X, Y, Z.
The answer is motion, this is what I would go with because when you are dealing with gases it puts motion in the term of particles.
Group 1A(1), the alkali metals, includes lithium, sodium, and potassium. Group 7A(17) the halogens, includes chlorine, bromine, and iodine. hope this helps:)
0.32 moles
You just do 14/ 44.01 (the atomic mass of carbon + oxygen's atomic massX2)