Answer: There are
atoms of hydrogen are present in 40g of urea,
.
Explanation:
Given: Mass of urea = 40 g
Number of moles is the mass of substance divided by its molar mass.
First, moles of urea (molar mass = 60 g/mol) are calculated as follows.

According to the mole concept, 1 mole of every substance contains
atoms.
So, the number of atoms present in 0.67 moles are as follows.

In a molecule of urea there are 4 hydrogen atoms. Hence, number of hydrogen atoms present in 40 g of urea is as follows.

Thus, we can conclude that there are
atoms of hydrogen are present in 40g of urea,
.
Answer:
0.295 L
Explanation:
It seems your question lacks the final concentration value. But an internet search tells me this might be the complete question:
" A chemist must dilute 47.2 mL of 150. mM aqueous sodium nitrate solution until the concentration falls to 24.0 mM. He'll do this by adding distilled water to the solution until it reaches a certain final volume. Calculate this final volume, in liters. Be sure your answer has the correct number of significant digits. "
Keep in mind that if your value is different, the answer will be different as well. However the methodology will remain the same.
To solve this problem we can<u> use the formula</u> C₁V₁=C₂V₂
Where the subscript 1 refers to the concentrated solution and the subscript 2 to the diluted one.
- 47.2 mL * 150 mM = 24.0 mM * V₂
And <u>converting into L </u>becomes:
- 295 mL *
= 0.295 L
Answer:

Explanation:
You must convert 30 % (m/v) to a molar concentration.
Assume 1 L of solution.
1. Mass of NaOH

2. Moles of NaOH

3. Molar concentration of NaOH

4. Volume of NaOH
Now that you know the concentration, you can use the dilution formula .

to calculate the volume of stock solution.
Data:
c₁ = 7.50 mol·L⁻¹; V₁ = ?
c₂ = 0.1 mol·L⁻¹; V₂ = 250 mL
Calculations:
(a) Convert millilitres to litres

(b) Calculate the volume of dilute solution


Answer:
I think it's B but I could be wrong so really sorry if I am
Answer: Charles's law states that the volume of a given amount of gas is directly proportional to its temperature on the kelvin scale when the pressure is held constant. with k being a proportionality constant that depends on the amount and pressure of the gas.
Explanation: