The combustion reaction is as expressed,
CxHy + O2 --> CO2 + H2O
The mass fraction of carbon in CO2 is 3/11. Hence,
mass of C in CO2 = (3.14 g)(3/11) = 0.86 g C.
Given that we have 1 g of the hydrocarbon, the mass of H is equal to 0.14 g.
moles of C = 0.86 g C / 12 g = 0.0713
moles of H = 0.14 g H / 1 g = 0.14
The empirical formula for the hydrocarbon is therefore, CH₂.
<span>La temperatura de congelación del agua es 0 grados </span>centígrados.
In dilution we add distilled water to decrease the concentration of required sample from high concentration to lower concentration
The law used for dilution:
M₁V₁]Before dilution = M₂V₂] After dilution
M₁ = 1.5 M
V₁ = ?
M₂ = 0.3 M
V₂ = 500 ml
1.5 * V₁ = 0.3 * 500 ml
so V₁ = 100 ml and it completed to 500 ml using 400 ml deionized water
Answer:
They are held together by hydrogen bonds
Explanation:
Hydrogen bonds are special dipole-dipole attractions between polar molecules in which a hydrogen atom is directly joined to a highly electronegative atom(oxygen or nitorgen or fluorine).
Such molecules includes water, alkanoic acids, ammonia and amines.
A hydrogen nucleus has a high concentration of positive charge. The bond is actually an electrostatic attraction between the hydrogen atom of one molecule and the electronegative atom(O or N or F).
Hydrogen bonds are very effective in binding molecules into larger units. Most substances that joins with hydrogen bonds have a higher boiling point and lower volatility.
This is why we have a strong intermolecular bond between water molecules.