Answer:
0.9726g/ml
0.9726g/cm³
Explanation:
Density is found by dividing mass by volume.
Density = mass/volume
mass = 7.1g
volume= the new level of water raised - the initial level of water
volume = 32.4 - 25.1
volume = 7.3 ml
Volume is the amount of space occupied by an object.meaning the amount of volume displaced by the object is its volume.
density = 7.1 /7.3
density = 0.9726g/ml
or 0.9726 g/cm³
If you need any clarification or more explanation pls do mention at the comment section.
hope this helps and if it does pls mark as branliest answer thx
5.60 cuz I I’m dumb vendbsnksnddn
Answer:
The products are carbon dioxide and water
Explanation:
Step 1: Data given
Combustion = a reaction in which a substance reacts with oxygen gas, releasing energy in the form of light and heat. Combustion reactions must involve O2 as one reactant.
Step 2: The complete combustion of C3H7OH:
For the combustion of 1-propanol, we need O2.
The products of this combustion are CO2 and H2O.
C3H7OH + O2→ CO2 + H2O
On the left side we have 3x C (in c3H7OH), on the right side we have 1x C (in CO2). To balance the amount of C, we have to multiply CO2 on the right side by 3
C3H7OH + O2→ 3CO2 + H2O
On the left side we have 8x H (in C3H7OH) and 2x on the right side (in H2O). To balance the amount of H, we have to multiply H2O, on the right side by 4.
C3H7OH + O2→ 3CO2 + 4H2O
On the left side we have 3x O (1x in C3H7OH and 2x in O2), on the right side we have 10x O (6x in CO2 and 4x in H2O).
To balance the amount of O on both sides, we have to multiply C3H7OH by 2, multiply O2 by 9. Then we have to multiply 3CO2 by 2 and 4H2O by 2. Now the equation is balanced.
2C3H7OH + 9O2→ 6CO2 + 8H2O
For 2 moles propanol, we need 9 moles of O2 to produce 6 moles of CO2 and 8 moles Of H2O
The products are carbon dioxide and water
If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. We can calculate the concentration of CO₂ using Henry's law.

We can calculate the mass of CO₂ in 1.1 L considering its molar mass is 44.01 g/mol.

Now, we will repeat the same procedure for a partial pressure of 1.28 atm.


The mass of CO₂ released will be equal to the difference in the masses at the different pressures.

If the partial pressure of CO₂ in a bottle of carbonated water decreases from 4.60 atm to 1.28 atm, the mass of CO₂ released is 0.265 g.
Learn more: brainly.com/question/18987224
<em>The partial pressure of CO₂ gas in a bottle of carbonated water is 4.60 atm at 25 ºC. How much CO₂ gas (in g) will be released from 1.1 L of the carbonated water when the partial pressure of CO2 is lowered to 1.28 atm? At 25 ºC, the Henry’s law constant for CO₂ dissolved in water is 1.65 x 10⁻³ M/atm, and the density of water is 1.0 g/cm³.</em>
Sodium. 11
Carbon. 12
Hydrogen 1
Oxygen 2
Fluuorine. 14
Boron. 5
Lithium. 6
Helium 3
Phosphorus 15
Sulfur 6