Answer:
172 g Al
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s <em>gather all the information</em> in one place.
M_r: 26.98 101.96
4Al + 3O₂ ⟶ 2Al₂O₃
m/g: 325
(a) Calculate the <em>moles of Al₂O₃
</em>
n = 325 g Al₂O₃ × 1 mol Al₂O₃ /39.10 g Al₂O₃
n = 3.188 mol Al₂O₃
(b) Calculate the <em>moles of Al
</em>
The molar ratio is (4 mol Al/2 mol Al₂O₃)
n = 3.188 mol Al₂O₃ × (4 mol Al/2 mol Al₂O₃)
n = 6.375 mol Al
(c) Calculate the <em>mass of Al</em>
m = 6.375 mol Al × (26.98 g Al/1 mol Al)
m = 172 g Al
Note: The answer can have only <em>three</em> significant figures because that is all you gave for the mass of Al₂O₃.
Answer:
Approximately .
Explanation:
The actual yield of was given. The theoretical yield needs to be calculated from the quantity of the reactant.
Balance the equation for the hydrolysis of water:
.
Note the ratio between the coefficient of and :
.
This ratio will be useful for finding the theoretical yield of .
Look up the relative atomic mass of hydrogen and oxygen on a modern periodic table.
Calculate the formula mass of and :
.
.
Calculate the number of moles of molecules in of :
.
Make use of the ratio to find the theoretical yield of (in terms of number of moles of molecules.)
.
Calculate the mass of that approximately of (theoretical yield.)
.
That would correspond to the theoretical yield of (in term of the mass of the product.)
Given that the actual yield is , calculate the percentage yield:
.
Answer:
Standard form: (x+3)^2=1/2(y+3)
f(1) = 29
f(-1) = 5
Explanation:
The standard form of a parabola with a directrix that is horizontal is
(x-h)=4(P)(y-k)
Using the vertex form, find the vertex, foci, and the distance from the vertex to the focus or directrix.
It's easier to use the vertex form to plug in values for x.
f(1) = 2((1)+3)^2-3
f(1) = 29
f(-1) = 2((-1)+3)^2-3
f(-1) = 5
Answer is c photosynthesis
Answer:
24 is the correct anwer
this the anwer text this u no