Answer:
5 moles of NO₂ will remain after the reaction is complete
Explanation:
We state the reaction:
3NO₂(g) + H₂O(l) → 2HNO₃(l) + NO(g)
3 moles of nitric oxide can react with 1 mol of water. Ratio is 3:1, so we make this rule of three:
If 3 moles of nitric oxide need 1 mol of water to react
Then, 26 moles of NO₂ may need (26 .1) / 3 = 8.67 moles of H₂O
We have 7 moles of water but we need 8.67 moles, so water is the limiting reactant because we do not have enough. In conclusion, the oxide is the reagent in excess. We can verify:
1 mol of water needs 3 moles of oxide to react
Therefore, 7 moles of water will need (7 .3)/1 = 21 moles of oxide
We have 26 moles of NO₂ and we need 21, so we still have oxide after the reaction is complete. We will have (26-21) = 5 moles of oxide that remains
I dont know your question but that is true
All atoms of the same element have the same
number of protons. Every atom also has a nucleus.
The mass of water decomposed to produce 50 g oxygen has been 56.28 g. Thus, option D is correct.
The reaction for the decomposition of water has been:

From the balanced equation, 2 moles of water decomposes to form 1 moles of hydrogen and 1 mole of oxygen.
The mass of oxygen produced has been 50 g. The moles of oxygen has been given by:

The moles of oxygen has been:

The moles of oxygen produced has been 1.5625 mol.
The moles of hydrogen decomposed has been given from the balanced chemical equation as:

The moles of hydrogen decomposes has been 3.125 mol.
The mass of hydrogen decomposed has been given by:

The mass of water decomposed to produce 50 g oxygen has been 56.28 g. Thus, option D is correct.
For more information about moles produced, refer to the link:
brainly.com/question/10606802
Answer:
Pag-alaga ng kalikasan, pagpapakita ng mga tanawin o kagandahan ng Pilipinas