First, you need to count copper mass in alloy.
Second, you have to make an equation an find x ( the copper mass must be added). The answer is: 13,5g pure copper
Answer:
0.4 M
Explanation:
The process that takes place in an aqueous K₂HPO₄ solution is:
First we <u>calculate how many K₂HPO₄ moles are there in 200 mL of a 0.2 M solution</u>:
- 200 mL * 0.2 M = 40 mmol K₂HPO₄
Then we <u>convert K₂HPO₄ moles into K⁺ moles</u>, using the <em>stoichiometric coefficients</em> of the reaction above:
- 40 mmol K₂HPO₄ *
= 80 mmol K⁺
Finally we <em>divide the number of K⁺ moles by the volume</em>, to <u>calculate the molarity</u>:
- 80 mmol K⁺ / 200 mL = 0.4 M
The statement above is true. He conducted the oil-drop experiment which lead him to determine the charge of the electron. He suspended charged droplets into an oil which is in between two electrodes and balancing the upward force with the downward forces.
According to Raoult's law the relative lowering of vapour pressure of a solution made by dissolving non volatile solute is equal to the mole fraction of the non volatile solute dissolved.
the relative lowering of vapour pressure is the ratio of lowering of vapour pressure and vapour pressure of pure solvent

Where
xB = mole fraction of solute=?

p = 22.8 torr

mole fraction is ratio of moles of solute and total moles of solute and solvent
moles of solvent = mass / molar mass = 500 /18 = 27.78 moles
putting the values




mass of glucose = moles X molar mass = 1.218 X 180 = 219.24 grams
Answer:
the answer is longgitudinal