Answer:D. Ratio of oxygen/nitrogen
Explanation: the ratio will never change no matter the air pressure!
Answer:
The concentration of chloride ions in the final solution is 3 M.
Explanation:
The number of moles present in a solution can be calculated as follows:
number of moles = concentration in molarity * volume
In 100 ml of a 2 M KCl solution, there will be (0.1 l * 2mol/l) 0.2 mol Cl⁻
For every mol of CaCl₂, there are 2 moles of Cl⁻, then, the number of moles of Cl⁻ in 50 l of a 1.5 M solution will be:
number of moles of Cl⁻ = 2 * number of moles of CaCl₂
number of moles of Cl⁻ = 2 ( 50 l * 1.5 mol / l ) = 150 mol Cl⁻
The total number of moles of Cl⁻ present in the solution will be (150 mol + 0.2 mol ) 150.2 mol.
Assuming ideal behavior, the volume of the final solution will be ( 50 l + 0.1 l) 50.1 l. The molar concentration of chloride ions will be:
Concentration = number of moles of Cl⁻ / volume
Concentration = 150.2 mol / 50.1 l = 3.0 M
2.4 x 10²² atoms
<h3>Further explanation</h3>
Atomic mass is the average atomic mass of all its isotopes
In determining the mass of an atom, as a standard is the mass of 1 carbon-12 atom whose mass is 12 amu
So the atomic mass obtained is the mass of the atom relative to the 12th carbon atom
mass single Uranium atom=4.7 x 10⁻²² g
then for 111 mg=0.111 g

Answer:
20N
Explanation:
Given parameters:
Force(N) Acceleration(m/s²)
10 0.2
? 0.4
Unknown:
The force applied when the acceleration is 0.4m/s²
Solution:
From newton's second law of motion;
Force = mass x acceleration
Since we are using the same box, let us find the mass of the box;
Force = mass x acceleration
10 = mass x 0.2
mass =
= 50kg
Now,
The force in the second instance will be;
Force = 50 x 0.4 = 20N
<span>When water decomposes into oxygen and hydrogen, the mass "Remains Constant" as according to Law of Conservation of mass, mass can neither be created not destroyed,.
In short, Your Answer would be Option A
Hope this helps!</span>