Answer:
producing colored sparks in fireworks and rusting in the presence of water and oxygen
Explanation:
yeet
Answer:
34.3 g
Explanation:
Step 1: Write the balanced equation
2 CH₃CH₂OH ⇒ CH₃CH₂OCH₂CH₃ + H₂O
Step 2: Calculate the moles corresponding to 50.0 g of CH₃CH₂OH
The molar mass of CH₃CH₂OH is 46.07 g/mol.
50.0 g × 1 mol/46.07 g = 1.09 mol
Step 3: Calculate the theoretical moles of CH₃CH₂OCH₂CH₃ produced
The molar ratio of CH₃CH₂OH to CH₃CH₂OCH₂CH₃ is 2:1. The moles of CH₃CH₂OCH₂CH₃ theoretically produced are 1/2 × 1.09 mol = 0.545 mol.
Step 4: Calculate the real moles of CH₃CH₂OCH₂CH₃ produced
The percent yield of the reaction is 85%.
0.545 mol × 85% = 0.463 mol
Step 5: Calculate the mass corresponding to 0.463 moles of CH₃CH₂OCH₂CH₃
The molar mass of CH₃CH₂OCH₂CH₃ is 74.12 g/mol.
0.463 mol × 74.12 g/mol = 34.3 g
So platinum is a transition metal. In general transition metals are reducers, which means they can give the electrons they have, to the sodium atoms. Also in chemistry we look at sub orbitals rather that shells(2,8,8). So due to the energy from heat, the d orbital split as electrons move to a higher energy level. Some of the electrons are given to the sodium ions and therefore the flame changes colour to yellow.
The excitation of the electrons is caused by them getting energy and so moving up an energy level. This energy is released and the electron returns to it's original state. The energy released, however, does not release in the same direction, but in different/various directions. Therefore the colour of the light changes as some energy is released in the surrounding.