The solution is as follows:
K = [Partial pressure of isoborneol]/[Partial pressure of borneol] = 0.106
The molar mass of isoborneol/borneol is 154.25 g/mol
Mol isoborneol = 15 g/154.25 = 0.0972 mol
Mol borneol = 7.5 g/154.25 = 0.0486 mol
Use the ICE approach
borneol → isoborneol
I 0.0972 0.0486
C -x +x
E 0.0972 - x 0.0486 + x
Total moles = 0.1458
Using Raoult's Law,
Partial Pressure = Mole fraction*Total Pressure
[Partial pressure of isoborneol] = [(0.0972-x)/0.1458]*P
[Partial pressure of borneol] = [(0.0486+x/0.1458)]*P
0.106 = [(0.0972-x)/0.1458]*P/ [(0.0486+x/0.1458)]*P
Solving for x,
x = 0.0832
Thus,
<em>Mol fraction of borneol = (0.0486+0.0832)/0.1458 = 0.904</em>
<em>Mol fraction of isoborneol = (0.0972-0.0832)/0.1458 = 0.096</em>
Answer:
Na(s) + C(s, graphite) + 1/2 H₂(g) + 3/2 O₂(g) → NaHCO₃(s)
Explanation:
The standard formation reaction is the synthesis of 1 mole of a substance from its elements in their most stables forms under standard conditions. The balanced chemical equation is:
Na(s) + C(s, graphite) + 1/2 H₂(g) + 3/2 O₂(g) → NaHCO₃(s)
Answer:
The complete question is as follows
Given the incomplete equation: 2 N2O5(g) ==> Which set of products completes and balances the incomplete equation?
A)2 N2(g) + 3 H2(g)
B)2 N2(g) + 2 O2(g)
C)4 NO2(g) + O2(g)
D)4 NO(g) + SO2(g)
The correct option is C) 4NO2(g) + O2(g)
Explanation:
Note that the products should be NO2 and O2 since the reactant is entirely made up of N and O. option A is not correct as hydrogen cannot emerge as a product in this reaction. Matter can never be created or be destroyed bu can only change in a chemical reaction. Option D is not also correct for the same reason.
Option B is not correct since it did not balance the number of atoms of O and N in the reactant side of the equation.
The option C) 4NO2(g) + O2(g) is therefore the right option since it balances both the elements and the number of atoms of the elements present.
Mg + 1/2 O2 → MgO
1 mol = 24 g of Mg
X mol = 12 g of Mg
x = 0.5 moles of Mg
Mg :MgO = 1:1 (coefficient from equations using mole ratio)
So
0.5 moles of MgO
1 mol MgO = (24+16) g = 40 g
0.5 moles of MgO = 0.5 × 40
= 20 g of MgO produced
Answer:
7.5 M
Explanation:
In order to find a solution's molar concentration, or molarity, you need to determine how many moles of solute, which in your case is sodium sulfate,
Na
2
SO
4
, you get in one liter of solution.
That is how molarity was defined -- the number of moles of solute in one liter of solution.
So, you know that you have
0.090
moles of solute in
12 mL
of solution. Your goal here will be to scale up this solution by using this information as a conversion factor to help you determine the number of moles of solute present in