The ph of the best buffer is 4.74
The given acetic acid is a weak acid
The equation of the pH of the buffer
pH = pKa + log ( conjugate base / weak acid ).
For best buffer the concentration of the weak acid and its conjugate base is equal.
pH = pKa + log 1
pH = pKa + 0
pH = pKa
given Ka = 1.8 × 10⁻⁵
pKa = - log ka
pH = -log ( 1.8 × 10⁻⁵ )
pH = 4. 74
Hence the pH of the best buffer is 4.74
Learn more about the pH on
brainly.com/question/22390063
#SPJ4
<>"One such trend is closely linked to atomic radii -- ionic radii. Neutral atoms tend to increase in size down a group and decrease across a period. When a neutral atom gains or loses an electron, creating an anion or cation, the atom's radius increases or decreases, respectively."<>
Magnesium oxide is an ionic compound with a very high melting point and which requires a large amount of energy for melting.
<h3>What are ionic compounds?</h3>
Ionic compounds are compounds which are formed between oppositely charged ions which are held together by electrostatic forces of attraction between the oppositely charged ions.
Ionic compounds are formed when metal atoms donate electrons to non-metals atoms to form ions.
Magnesium oxide is an ionic compound.
The nature of bonding is ionic bonding.
It has a crystalline lattice structure.
The forces of attraction is electrostatic forces of attraction.
It has a high melting point of 2,852 °C, and thus requires a large amount of energy go melting to occur.
Therefore, magnesium oxide is an ionic compound which requires a large amount of energy for melting.
Learn more about ionic compounds at: brainly.com/question/11638999
Answer:
The pKa of the conjugate acid is 17.7
Explanation:
If hydrogen is removed from water, the equilibrium concentration of the conjugate acid according to the information given in the question becomes,
Kₐ = [OH⁻]/[H₂O]
Now, we determine the equivalent pKa
pKa = -log[ka]
pKa = -log[100]
pKa = -2
Removal of hydrogen from water is reversible as shown below;
H₂O ⇄ OH⁻ + H⁺
15.7 -2
This reaction is reversible, and the difference in pKa = pKa[H₂O] - pKa[H⁺];
pKa of the conjugate acid = 15.7 - (-2) = 17.7
The pKa of the conjugate acid is 17.7