It's not, if it were it would be ice. The water is a bit warmer.
Answer:
So first thing to do in these types of problems is write out your chemical reaction and balance it:
Mg + O2 --> MgO
Then you need to start thinking about moles of Magnesium for moles of Magnesium Oxide. Based on the above equation 1 mole of Magnesium is needed to make one mole of Magnesium Oxide.
To get moles of magnesium you need to take the grams you started with (.418) and convert to moles by dividing by molecular weight of Mg (24.305), this gives you .0172 moles of Mg.
The theoretical yield would be the assumption that 100% of the magnesium will be converted into Magnesium Oxide, so you would get, based on the first equation, .0172 mol of MgO. Multiplying this by the molecular weight of MgO (24.305+16) gives us .693 g of MgO.
The percent yield is what you actually got in the experiment, and for this you subtract off the total mass from the crucible mass, or 27.374 - 26.687, which gives .66 g of MgO obtained.
Percent yield is acutal/theoretical, .66/.693, or 95.24%.
I'll let you do the same for the second trial, and average percent yield is just an average of the two trials percent yield.
Hope this helps.
Answer: The value of
for the half-cell reaction is 0.222 V.
Explanation:
Equation for solubility equilibrium is as follows.

Its solubility product will be as follows.
![K_{sp} = [Ag^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)
Cell reaction for this equation is as follows.

Reduction half-reaction:
, 
Oxidation half-reaction:
,
= ?
Cell reaction: 
So, for this cell reaction the number of moles of electrons transferred are n = 1.
Solubility product, ![K_{sp} = [Ag^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)
= 
Therefore, according to the Nernst equation
At equilibrium,
= 0.00 V
Putting the given values into the above formula as follows.

= 
= 0.577 V
Hence, we will calculate the standard cell potential as follows.



= 0.222 V
Thus, we can conclude that value of
for the half-cell reaction is 0.222 V.
Answer:
Theoretical maximum moles of hydroquinone: 0.2167 mol.
Explanation:
Hello,
In this case, the undergoing chemical reaction is like:

In such a way, since the molar mass of quinone is 108.1 g/mol and it is in a 1:1 molar ratio with hydroquinone, we can easily compute the theoretical maximum moles of hydroquinone by stoichiometry:

Clearly, this is the theoretical yield which in grams is:

Which allows us to compute the percent yield as well since the obtained mass of the product is 13.0 g:

Best regards.