Answer:
While calculating the stresses in a body since we we assume a constant distribution of stress across a cross section if the body is loaded along the centroid of the cross section , this assumption of uniformity is assumed only on the basis of Saint Venant's Principle. 
Saint venant principle states that the non uniformity in the stress at the point of application of load is only significant at small distances below the load and depths greater than the width of the loaded material this non uniformity is negligible and hence a uniform stress distribution is a reasonable and correct assumption while solving the body for stresses thus greatly simplifying the analysis.
 
        
             
        
        
        
Answer:
Heat losses by convection, Qconv = 90W
Heat losses by radiation, Qrad = 5.814W
Explanation:
Heat transfer is defined as the transfer of heat from the heat surface to the object that needs to be heated. There are three types which are:
1. Radiation
2. Conduction 
3. Convection 
Convection is defined as the transfer of heat through the actual movement of the molecules.
Qconv = hA(Temp.final - Temp.surr)
Where h = 6.4KW/m2K
A, area of a square = L2
= (0.25)2
= 0.0625m2
Temp.final = 250°C
Temp.surr = 25°C
Q = 64 * 0.0625 * (250 - 25)
= 90W
Radiation is a heat transfer method that does not rely upon the contact between the initial heat source and the object to be heated, it can be called thermal radiation.
Qrad = E*S*(Temp.final4 - Temp.surr4)
Where E = emissivity of the surface
S = boltzmann constant 
= 5.6703 x 10-8 W/m2K4
Qrad = 5.6703 x 10-8 * 0.42 * 0.0625 * ((250)4 - (25)4)
= 5.814 W
 
        
             
        
        
        
Answer:
The mass flow rate of cooling water required to cool the refrigerant is  .
.
Explanation:
A condenser is a heat exchanger used to cool working fluid (Refrigerant 134a) at the expense of cooling fluid (water), which works usually at steady state. Let suppose that there is no heat interactions between condenser and surroundings.The condenser is modelled after the First Law of Thermodynamics, which states: 



The mass flow rate of the cooling water is now cleared:

Given that  ,
,  ,
,  and
 and  , the mass flow of the cooling water is:
, the mass flow of the cooling water is:


The mass flow rate of cooling water required to cool the refrigerant is  .
.
 
        
             
        
        
        
The correct question;
An object of irregular shape has a characteristic length of L = 1 m and is maintained at a uniform surface temperature of Ts = 400 K. When placed in atmospheric air at a temperature of Tinfinity = 300 K and moving with a velocity of V = 100 m/s, the average heat flux from the surface to the air is 20,000 W/m² If a second object of the same shape, but with a characteristic length of L = 5 m, is maintained at a surface temperature of Ts = 400 K and is placed in atmospheric air at Too = 300 K, what will the value of the average convection coefficient be if the air velocity is V = 20 m/s?
Answer:
h'_2 = 40 W/K.m²
Explanation:
We are given;
L1 = 1m
L2 = 5m
T_s = 400 K
T_(∞) = 300 K
V = 100 m/s
q = 20,000 W/m²
Both objects have the same shape and density and thus their reynolds number will be the same.
So,
Re_L1 = Re_L2
Thus, V1•L1/v1 = V2•L2/v2
Hence, 
(h'_1•L1)/k1 = (h'_2•L2)/k2
Where h'_1 and h'_2 are convection coefficients
Since k1 = k2, thus, we now have;
h'_2 = (h'_1(L1/L2)) = [q/(T_s - T_(∞))]• (L1/L2)
Thus, 
h'_2 = [20,000/(400 - 300)]•(1/5)
h'_2 = 40 W/K.m²