1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
3 years ago
10

Generally natural shape of stone is in shaped as (a)angular (b)irregular (c)cubical cone shape (d)regular

Engineering
2 answers:
Lunna [17]3 years ago
7 0
Answer (B) irregular
Rudiy273 years ago
6 0
Option B. Did i helped?
You might be interested in
Oil with a density of 850 kg/m3 and kinematic viscosity of 0.00062 m2 /s is being discharged by a 8-mm-diameter, 40-m-long horiz
Naddik [55]

Answer:

Q = 5.06 x 10⁻⁸ m³/s

Explanation:

Given:

v=0.00062 m² /s       and ρ= 850 kg/m³  

diameter = 8 mm

length of horizontal pipe = 40 m

Dynamic viscosity =

μ =  ρv

   =850 x 0.00062

   = 0.527 kg/m·s  

The pressure at the bottom of the tank is:

P₁,gauge = ρ g h = 850 x 9.8 x 4 = 33.32 kN/m²

The laminar flow rate through a horizontal pipe is:

Q = \dfrac{\Delta P \pi D^4}{128 \mu L}

Q= \dfrac{33.32 \times 1000 \pi\times 0.008^4}{128 \times 0.527 \times 40}

Q = 5.06 x 10⁻⁸ m³/s

4 0
2 years ago
Which permission do you need to shoot on the owner’s property?
Elena L [17]

Answer:

filming permit,

( MARK ME BRAINLIEST!!)

4 0
2 years ago
Let A→=(150iˆ+270jˆ) mm , B→=(300iˆ−450jˆ) mm , and C→=(−100iˆ−250jˆ) mm . Find scalars r and s, if possible, such that R→=rA→+s
ioda

Answer: r = 0.8081; s = -0.07071

Explanation:

A = (150i + 270j) mm

B = (300i - 450j) mm

C = (-100i - 250j) mm

R = rA + sB + C = 0i + 0j

R = r(150i + 270j) + s(300i - 450j) + (-100i - 250j) = 0i + 0j

R = (150r + 300s - 100)i + (270r - 450s - 250)j = 0i + 0j

Equating the i and j components;

150r + 300s - 100 = 0

270r - 450s - 250 = 0

150r + 300s = 100

270r - 450s = 250

solving simultaneously,

r = 0.8081 and s = -0.07071

QED!

5 0
3 years ago
Consider a Carnot refrigeration cycle executed in a closed system in the saturated liquid–vapor mixture region using 1.06 kg of
Alexxandr [17]

Answer:

P_m_i_n = 442KPA

Explanation:

We are given:

m = 1.06Kg

T_H = 1.2T_L

T = 22kj

Therefore we need to find coefficient performance or the cycle

COP_R = \frac {1}{(T_R/T_l) -1}

= \frac {1 }{1.2-1}

= 5

For the amount of heat absorbed:

Q_l = COP_R Wm

= 5 × 22 = 110KJ

For the amount of heat rejected:

Q_H = Q_L + W_m

= 110 + 22 = 132KJ

[tex[ q_H = \frac{Q_L}{m} [/tex];

= = \frac{132}{1.06}

= 124.5KJ

Using refrigerant table at hfg = 124.5KJ/Kg we have 69.5°c

Convert 69.5°c to K we have 342.5K

To find the minimum temperature:

T_L = \frac{T_H}{1.2};

T_L = \frac{342.5}{1.2}

= 285.4K

Convert to °C we have 12.4°C

From the refrigerant R -134a table at T_L = 12.4°c we have 442KPa

6 0
3 years ago
Ammonia contained in a piston-cylinder assembly, initially saturated vapor at 0o F, undergoes an isothermal process during which
Rudik [331]

ANSWERS:

-P_{2(a)} =15.6lbf/in^2\\-P_{2(b)} =30.146lbf/in^2\\ T_{2(a)} =0^oF\\T_{2(b)} =0^oF\\x_{2(b)} =49.87percent

Explanation:

Given:

Piston cylinder assembly which mean that the process is constant pressure process P=C.

<u>AMMONIA </u>

state(1)

saturated vapor x_{1} =1

The temperature T_{1} =0^0 F

Isothermal process  T=C

a)

-V_{2} =2V_{1} ( double)

b)

-V_{2} =.5V_{2} (reduced by half)

To find the final state by giving the quality in lbf/in we assume the friction is neglected and the system is in equilibrium.

state(1)

using PVT data for saturated ammonia

-P_{1} =30.416 lbf/in^2\\-v_{1} =v_{g} =9.11ft^3/lb

then the state exists in the supper heated region.

a) from standard data

-v_{1(a)} =2v_{1} =18.22ft^3/lb\\-T_{1} =0^oF

at\\P_{x} =14lbf/in^2\\-v_{x} =20.289 ft^3/kg

at\\P_{y} =16 lbf/in^2\\-v_{y} =17.701ft^3/kg

assume linear interpolation

\frac{P_{x}-P_{2(b)}  }{P_{x}- P_{y} } =\frac{v_{x}-v_{1(a)}  }{v_{x}-v_{y}  }

P_{1(b)}=P_{x} -(P_{x} -P_{y} )*\frac{v_{x}- v_{1(b)} }{v_{x}-v_{y}  }\\ \\P_{1(b)} =14-(14-16)*\frac{20.289-18.22}{20.289-17.701} =15.6lbf/in^2

b)

-v_{2(a)} =2v_{1} =4.555ft^3/lb\\v_{g}

from standard data

-v_{f} =0.02419ft^3/kg\\-v_{g} =9.11ft^3/kg\\v_{f}

then the state exist in the wet zone

-P_{s} =30.146lbf/in^2\\v_{2(a)} =v_{f} +x(v_{g} -v_{f} )

x=\frac{v_{2(a)-v_{f} } }{v_{g} -v_{f} } \\x=\frac{4.555-0.02419}{9.11-0.02419} =49.87%

3 0
3 years ago
Other questions:
  • 6.15. In an attempt to conserve water and to be awarded LEED (Leadership in Energy and Environmental Design) certification, a 20
    14·1 answer
  • A receptacle, plug, or any other electrical device whose design limits the ability of an electrician to come in contact with any
    14·1 answer
  • 2. A fluid at 14.7 psi (lb-f per square inch) with kinematic viscosity (????????) 1.8 x10-4 ft2/sec and density(????????) 0.076
    11·1 answer
  • Consider a drainage basin having 60% soil group A and 40% soil group B. Five years ago the land use pattern in the basin was ½ w
    12·1 answer
  • Ten dollars per hour is about how much income per year
    5·2 answers
  • Multiple Choice
    10·1 answer
  • How do you solve this. I dont know how so I need steps if you dont mind
    13·1 answer
  • The pressure at the bottom of an 18 ft deep storage tank for gasoline is how much greater than at the top? Express your answer i
    15·1 answer
  • Describe how to mix and apply body filler?
    13·1 answer
  • 3.8 LAB - Select lesson schedule with multiple joins
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!