Answer:
The pressure exerted by this man on ground
(a) if he stands on both feet is 8.17 KPa
(b) if he stands on one foot is 16.33 KPa
Explanation:
(a)
When the man stand on both feet, the weight of his body is uniformly distributed around the foot imprint of both feet. Thus, total area in this case will be:
Area = A = 2 x 480 cm²
A = 960 cm²
A = 0.096 m²
The force exerted by man on his area will be equal to his weight.
Force = F = Weight
F = mg
F = (80 kg)(9.8 m/s²)
F = 784 N
Now, the pressure exerted by man on ground will be:
Pressure = P = F/A
P = 784 N/0.096 m²
<u>P = 8166.67 Pa = 8.17 KPa</u>
(b)
When the man stand on one foot, the weight of his body is uniformly distributed around the foot imprint of that foot only. Thus, total area in this case will be:
Area = A = 480 cm²
A = 0.048 m²
The force exerted by man on his area will be equal to his weight, in this case, as well.
Force = F = Weight
F = mg
F = (80 kg)(9.8 m/s²)
F = 784 N
Now, the pressure exerted by man on ground will be:
Pressure = P = F/A
P = 784 N/0.048 m²
<u>P = 16333.33 Pa = 16.33 KPa</u>
Answer:
The annual operating cost of the refrigerator is $102.78.
Explanation:
Power consumed by the refrigerator = 247 W = 247/1000 = 0.247 kW
Daily operation of the refrigerator = 19 hours
Annual operation of the refrigerator = 365 × 19 = 6,935 hours
Annual energy consumed = 0.247 kW × 6,935 hours = 1712.945 kWh
1 kWh of electricity cost $0.06
1712.945 kWh will cost 1712.945 × $0.06 = $102.78
Annual operating cost = $102.78
Answer: material resources: cameras, light detection and ranging systems, radar, sensors, advanced GPS, and millions of miles of training data, and more
I don't know about the intellectual resources sorry
Answer:
The answer is below
Explanation:
Given that:
Diameter (D) = 0.03 mm = 0.00003 m, length (L) = 2.4 mm = 0.0024 m, longitudinal tensile strength
, Fracture strength

a) The critical length (
) is given by:

The critical length (4.5 mm) is greater than the given length, hence th composite can be produced.
b) The volume fraction (Vf) is gotten from the formula:

Answer:
1. cout << "Num: " << songNum << endl;
2. cout << songNum << endl;
3. cout << songNum <<" songs" << endl;
Explanation:
//Full Code
#include <iostream>
using namespace std;
int main ()
{
int songNum;
songNum = 5;
cout << "Num: " << songNum << endl;
cout << songNum << endl;
cout << songNum <<" songs" << endl;
return 0;
}
1. The error in the first cout statement is that variable songnum is not declared.
C++ is a case sensitive programme language; it treats upper case and lower case characters differently.
Variable songNum was declared; not songnum.
2. Cout us used to print a Variable that has already been declared.
The error arises in int songNum in the second cout statement.
3. When printing more than one variables or values, they must be separated with <<