1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alik [6]
3 years ago
8

A baseball with a mass of 0.145 kilograms collides with a bat at a velocity of 44 meters/second. The ball bounces off the bat wi

th a speed of 49 meters/second in the opposite direction. What is the impulse?A baseball with a mass of 0.145 kilograms collides with a bat at a velocity of 44 meters/second. The ball bounces off the bat with a speed of 49 meters/second in the opposite direction. What is the impulse?
Physics
2 answers:
Sergio039 [100]3 years ago
7 0

its E. 13.5 newton seconds for plato people, i got 100 on the test

dangina [55]3 years ago
5 0
The answer is 13.5 N*S
You might be interested in
Which use of iron is due to its chemical properties?
AfilCa [17]
Colored sparks and rusting.
3 0
2 years ago
A box is being moved with a velocity (v) by a force P (parallel to v) along a level horizontal floor. The normal force is (Fn),
labwork [276]

Answer:

Force (P) : Positive

Normal Force (Fn) : Zero

Weight (mg) : Zero

Kinetic Frictional Force (fk) : Negative

Explanation:

The work done by a force on an object is given by the following formula:

W = F.d

W = F d Cosθ

where,

W = Work Done

f = Force Applied

d = displacement

θ = Angle between force and displacement

<u>FOR FORCE (P)</u>:

Since, force P is parallel to the motion of the box. Therefore, θ = 0°

Hence,

W = P d Cos 0°

W = P d(1)

W = Pd

<u>Therefore, work done by force (P) is Positive.</u>

<u></u>

<u>FOR NORMAL FORCE (Fn) AND WEIGHT (W)</u>:

Since, normal force and weight are perpendicular to the motion of the box. Therefore, θ = 90°

Hence,

W = Fn d Cos 90°= mg d Cos 90°

W = Fn d(0) = mg d (0)

W = 0

<u>Therefore, work done by Normal Force (Fn) and Weight (mg) is Zero.</u>

<u></u>

<u>FOR KINETIC FRICTIONAL FORCE (fk)</u>:

Since, kinetic frictional force acts in the opposite direction of motion of the box. Therefore, θ = 180°

Hence,

W = fk d Cos 180°

W = fk d(-1)

W = -fk d

<u>Therefore, work done by Kinetic Frictional Force (fk) is Negative.</u>

<u></u>

8 0
3 years ago
A rock is launched at angle theta=53.2∘ above the horizontal from an altitude of ℎ=182 km with an initial speed ????0=1.61 km/s.
Mariulka [41]

Answer:

The rock's final speed at the required altitude will be 42.24 m/s.

Explanation:

Let's start by finding the initial vertical speed.

Vertical Speed = 1.61 * Sin (53.2°)

Vertical Speed = 0.8 m/s

We want to know the speed of the rock when it is at an altitude of 91 km.

The total displacement of the rock from its starting position will thus be equal to -91 km

We can use this in the following equation:

s=u*t+\frac{1}{2} (a*t^2)

-91=0.8*t+\frac{1}{2} (-9.8*t^2)

t = 4.3918 seconds

Thus it takes 4.3918 seconds to reach the required altitude. We can now find the speed as follows:

V=U+at

V=0.8+(-9.8)*(4.3918)

V = -42.24

Thus the rock's final speed at the required altitude will be 42.24 m/s.

8 0
3 years ago
Read 2 more answers
g A 1.45-kg block is pushed against a vertical wall by means of a spring (k = 860 N/m). The coefficient of static friction betwe
olga_2 [115]

Answer:

The minimum compression is  x= 0.046m

Explanation:

From the question we are told that

              The mass of the block is m_b = 1.45 kg

               The spring constant is  k = 860 N/m

               The coefficient of static friction is  \mu = 0.36

For the the block not slip it mean the sum of forces acting on the  horizontal axis is equal to the forces acting on the vertical axis

     Now the force acting on the vertical axis is the force due to gravity which is mathematically given as

                   F_y = m_b*g

And the force acting on the horizontal axis is  force due to the spring which is mathematically represented as

                   F_x = k *x * \mu

where x is the minimum compression to keep the block from slipping

        Now equating this two formulas and making x the subject

                      x = \frac{m_b * g}{k * \mu}

substituting values we have

                     x = \frac{1.45 * 9.8}{860 *0.36}

                        x= 0.046m

 

3 0
3 years ago
In which medium does light travel faster: one with a critical angle of 27.0° or one with a critical angle of 32.0°? Explain. (Fo
Eddi Din [679]

Answer:

Among those two medium, light would travel faster in the one with a reflection angle of 32^{\circ} (when light enters from the air.)

Explanation:

Let v_{1} denote the speed of light in the first medium. Let v_{\text{air}} denote the speed of light in the air. Assume that the light entered the boundary at an angle of \theta_{1} to the normal and exited with an angle of \theta_{\text{air}}. By Snell's Law, the sine of \theta_{1}\! and \theta_{\text{air}}\! would be proportional to the speed of light in the corresponding medium. In other words:

\displaystyle \frac{v_{1}}{v_{\text{air}}} = \frac{\sin(\theta_{1})}{\sin(\theta_{\text{air}})}.

When light enters a boundary at the critical angle \theta_{c}, total internal reflection would happen. It would appear as if the angle of refraction is now 90^{\circ}. (in this case, \theta_{\text{air}} = 90^{\circ}.)

Substitute this value into the Snell's Law equation:

\begin{aligned}\frac{v_{1}}{v_{\text{air}}} &= \frac{\sin(\theta_{1})}{\sin(\theta_{\text{air}})} \\ &= \frac{\sin(\theta_{c})}{\sin(90^{\circ})} \\ &= \sin(\theta_{c})\end{aligned}.

Rearrange to obtain an expression for the speed of light in the first medium:

v_{1} = v_{\text{air}} \cdot \sin(\theta_{1}).

The speed of light in a medium (with the speed of light slower than that in the air) would be proportional to the critical angle at the boundary between this medium and the air.

For 0 < \theta < 90^{\circ}, \sin(\theta) is monotonically increasing with respect to \theta. In other words, for \!\theta in that range, the value of \sin(\theta)\! increases as the value of \theta\! increases.

Therefore, compared to the medium in this question with \theta_{c} = 27^{\circ}, the medium with the larger critical angle \theta_{c} = 32^{\circ} would have a larger \sin(\theta_{c}). such that light would travel faster in that medium.

4 0
3 years ago
Other questions:
  • _____ = distance / time<br> A. speed<br> B. motion<br> C. velocity<br> D. acceleration
    7·2 answers
  • What is the rate at which energy is transformed from one form to another called?
    12·1 answer
  • A small sphere is hung by a string from the ceiling of a van. When the van is stationary, the sphere hangs vertically. However,
    10·1 answer
  • Suppose that the speed of a ball moving in a horizontal circle is increasing at a steady rate. Is this increase in speed produce
    15·2 answers
  • According to Newton’s first law of motion, a moving object that is not acted on by an unbalanced force will..
    8·2 answers
  • Scientific investigations
    15·1 answer
  • How to solve period per loop
    14·1 answer
  • Part A: Explain why x = 5 makes 4x − 1 ≤ 19 true but not 4x − 1 &lt; 19. (5 points) Part B: What value from the set {6, 7, 8, 9,
    5·1 answer
  • Which of the following is a circuit component whose function includes changing an open circuit to a closed circuit?
    13·2 answers
  • A student determines the density ρ of steel by taking measurements from a steel wire
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!