The equation you need to use is

where Q is the charge in C, I is the current in Amps and T is the time in seconds.
So we have T = 60s
I =

A
let's work out Q

C
this is the total charge passing a point in a minute so divide by the charge of one electron (

) to find the number of electrons passing the point in a minute which equals
She does 200J .
We know she uses 20N of force and 10m is the distance. We multiply both numbers and we are given our answer of 200J. Hope this was helpful. :)
Answer:
F = 1480.77N
Explanation:
In order to calculate the required force to push the container with a constant velocity, you take into account the the sum of force on the container is equal to zero. Furthermore, you have for an incline the following sum of forces:
(1)
F: required force = ?
W: weight of the container = 1800N
N: normal force = weigth
α: angle of the incline = 28°
g: gravitational acceleration = 9.8m/s^2
μ: coefficient of friction = 0.4
You solve the equation (1) for F and replace the values of the other parameters:

The required force to push the container for the incline with a constant velocity is 1480.77N
Answer:
4
Explanation:
As you can see in the free body diagram there are 4 forces acting on the body.
Concept: According to Ohm's Law, the flow of electric current through a conductor is directly proportional to the potential difference across it, provided physical conditions (like temperature, pressure, volume etc.) remains same.
v = ir
or, r = v / i
Here, current (i) is measured by Ammeter which should be connected in series of any electrical circuit.
voltage (v) is measured by Voltmeter which should be connected parallel to the external resistance (r).
In the given experiment, the first arrangement of the circuit will show the smallest error because the voltmeter is connected exactly parallel to the external resistance.
In the second arrangement, the voltmeter is connected across external resistance (r) and Ammeter (A) and in this case, the voltmeter will not measure the exact potential drop across the external resistance (r). So, there would be more error.