Mass 1 + %abundance of first isotope + Mass 2 + %abundance of second isotope
/ 100
This is RAM.
<span>absorbed, radiated
Hope this helps. </span>
<span>In a mole of anything, there are 6.023 x 10^23 units. So, in 3.9 moles of sulfur, there are 3.9 * 6.023 x 10^23 = 23 x 10^23 = 2.3 x 10^24 atoms (keeping only 2 sig figs). Hope I help!!
</span>
Answer:
Mercury is the most dense whereas Titanium is the least dense.
Explanation:
Since Density = Mass / Volume, the slope of the line can immediately tell us its relative density between the metals.
<u>Answer:</u> The correct answer is Option b.
<u>Explanation:</u>
To calculate the amount of heat absorbed or released, we use the following equation:
.....(1)
where, q = amount of heat absorbed or released.
m = mass of the substance
c = heat capacity of water = 4.186 J/g ° C
= Change in temperature
We are given:
![m=30g\\\Delta T=[40-0]^oC=40^oC\\q=?J](https://tex.z-dn.net/?f=m%3D30g%5C%5C%5CDelta%20T%3D%5B40-0%5D%5EoC%3D40%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 5023.2 J
We are given:
![m=40g\\\Delta T=[40-30]^oC=10^oC\\q=?J](https://tex.z-dn.net/?f=m%3D40g%5C%5C%5CDelta%20T%3D%5B40-30%5D%5EoC%3D10%5EoC%5C%5Cq%3D%3FJ)
Putting values in equation 1, we get:

q = 1674.4 J
Heat gained by Trial 1 than trial 2 = 
Hence, the amount of heat gained in Trial 1 about 3347 J more than the heat released in Trial 2.
Thus, the correct answer is Option b.