Answer:
- <u><em>294.307 g/mol</em></u>
Explanation:
The first question for this statment is:
- <em>Calculate the gram-formula-mass of aspartame. </em>
<em />
<h2>Solution</h2>
The chemical formula is:

The <em>gram-formula-mass </em>is calculated adding the masses for all the atoms in the molecular formula:
Atom Number of atoms Atomic mass Total mass
g/mol g/mol
C 14 12.011 14 × 12.011 = 164.154
H 18 1.008 18 × 1.008 = 18.144
N 2 14.007 2 × 14.007 = 28.014
O 5 15.999 5 × 15.999 = 79.995
===================
Total 294.307 g/mol
Answer: 294.307 g/mol
<span>A) mL / s
This is the amount of milliliters per second</span>
Answer: option C) II < III < I
i.e [OH−] < [H3O+] < I
Explanation:
First, obtain the pH value of I and II, then compare both with III.
For I
Recall that pH = -log (H+)
So pH3O = -log (H3O+)
= - log (1x10−5)
= 4
For II
pOH = - log(OH-)
= - log(1x10−10)
= 9
For III
pH = 6
Since, pH range from 1 to 14, with values below 7 to be acidic, 7 to be neutral, above 7 to be alkaline: then, 9 < 6 < 4
Thus, the following solutions from least acidic to most acidic is II < III < I
Answer:
Take 100 ml of a 18 molar solution. The total number of moles is (1 liter/1000 ml) 100 ml 18 moles is 1.8 moles.
1.5 moles in 1 liter so If 1.1 liters of water is added, the total volume is 1.2 liters and 1.8 moles are dissolves in it. 1.8 moles/ 1.2 liters is 1.5 moles per liter.