Answer:
The second term of the sequence is 8 False ⇒ B
The third term of the sequence is 3 True ⇒ A
The fourth term of the sequence is -3 True ⇒ A
Step-by-step explanation:
The form of the recursive rule is:
f(1) = first term; f(n) = f(n - 1) + d, where
- f(n - 1) is the term before the nth term
- d is the common difference
∵ f(1) = 15, f(n) = f(n - 1) - 6 for n ≥ 2
∴ The first term = 15
∴ d = -6
let us find the 2nd, 3rd, and 4th terms
∵ n = 2
∴ f(2) = f(1) - 6
∵ f(1) = 15
∴ f(2) = 15 - 6 = 9
∴ The second term is 9
∴ The second term of the sequence is 8 False
∵ n = 3
∴ f(3) = f(2) - 6
∵ f(2) = 9
∴ f(3) = 9 - 6 = 3
∴ The third term is 3
∴ The third term of the sequence is 3 True
∵ n = 4
∴ f(4) = f(3) - 6
∵ f(3) = 3
∴ f(4) = 3 - 6 = -3
∴ The fourth term is -3
∴ The fourth term of the sequence is -3 True
Answer: the height of the trapezoid is 6 cm
Step-by-step explanation:
The formula for determining the area of a trapezoid is expressed as
Area = 1/2(a + b)h
Where
a and b are the length of The bases are the 2 sides of the trapezoid which are parallel with one another.
h represents the height of the trapezoid.
From the information given,
a = 6 cm
b = 8.5 cm
If the area of the cut out is 43.5 cm², then
53.5 = 1/2(6 + 8.5)h
Cross multiplying by 2, it becomes
43.5 × 2 = (6 + 8.5)h
87 = 14.5h
h = 87/14.5 = 6 cm
Answer:
The last one is your answer :))
Step-by-step explanation:
The volume of a sphere refers to the number of cubic units that will exactly fill a sphere. The volume of a sphere can be found or calculate by using the formula V=4/3πr^3, where r represents the radius of the figure.
In this exercise is given that a sphere has a radius of 4 centimeters and it is asked to find its volume and use 3.14 as the value of π or pi. The first step would be substitute the values into the previous mention formula.
V=4/3πr^3
V=4/3(3.14)(4 cm)^3
V=4/3)(3.14)(64 cm^3)
V=267.9 cm^3
The volume of the sphere is 267.9 cubic centimeters.
Answer:
x=5
Step-by-step explanation:
I was working on this problem also.
Maybe my version will help, too.
You need to sketch f given the information you have.
f'(x) is approximately a a cubic polynomial which means f will look like a quartic (think W)
f slopes down (negative slope) to x=2 and then slopes down again...this is a horizontal tangent.
f then slopes down to to x=5 where is has a minimum and then slopes up.
if im not wrong