Answer:
the individual atom in the molecule
Explanation:
In chemistry, the ball-and-stick model is a molecular model of a chemical substance. Invidual spheres there represent atoms in the molecule. The bigger atomic number the atom has, the larger diameter of the spheres this atom has in this model.
I hope this answer will help you. Have a nice day !
Answer:
60 grams of ice will require 30.26 calories to raise the temperature 1°C.
Explanation:
The amount of heat (Q) to raise the temperature of 60.0 g of ice by 1°C can be calculated from:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released or absorbed by the system.
m is the mass of the ice (m = 60.0 g).
c is the specific heat capacity of ice (c = 2.108 J/g.°C).
ΔT is the temperature difference (ΔT = 1.0 °C).
∴ Q = m.c.ΔT = (60.0 g)(2.108 J/g.°C)(1.0 °C) = 126.48 J.
<em>It is known that 1.0 cal = 4.18 J.</em>
<em>∴ Q = (126.48 J)(1.0 cal / 4.18 J) = 30.26 cal.</em>
Answer: The pull of the moon's gravity on Earth's water causes tidal bulges to form on the side closest to the moon and farthest from the moon. In the place where there are tidal bulges, high tide occurs along coastline.
Explanation:
I don't know how well known/accepted this is (it's in my textbook so I'm guessing it's right), but Sulphur has two forms - the alpha and beta forms ,apparently gamma sulphur exists as well.
The alpha form is rhombic, yellow in color and has a MP of 385.8 K. The beta form is colorless and has a MP of 393 K and is formed by melting rhombic sulphur and cooling it till a crust forms on top. Poke a hole and pour out the liquid inside and you get beta sulphur. The transition point is 369K - below it, alpha sulphur is stable and above it, beta sulphur is stable. Both have helped. I had to pull out an old textbook and that's something that I don't usually do.