Add 7 water atom to the right hand side to adjust the quantity of oxygen. Increase Cr(+3) by two to adjust the quantity of Cr. Duplicate Cl-by two to adjust the quantity of chlorine molecules.
Cr2O7[2-](aq) +2 Cl[-](aq) < - >2 Cr[3+] (aq) + Cl2(g)+7H2O
Presently adjust that charges.
you have - 4 charges on the left hand side, while +18 charges on the right hand side, there for include 14H+ the left hand side to adjust the charges
Cr2O7[2-](aq) +2 Cl[-](aq)+14H+ < - >2 Cr[3+] (aq) + Cl2(g)+7H2O
take note of that the oxidation number of hydrogen in water is +1
Answer:
1) 0 N
2) 8 N
Explanation:
The net force is the sum of all of the forces acting on the object.
For question 1, we can see that there is a force of 5 N acting to the right and 5 N acting to the left. If we define the right to be positive and the left to be negative, then the net force equals:
Fnet = 5N - 5N = 0 N
Therefore, the net force in question 1 is 0 N.
For question 2, the process is very similar. We want to find the sum of the forces acting on the object. In this case, there are forces of 3 N and 5 N acting to the right.
Fnet = 3 N + 5 N = 8 N
Therefore, the net force in question 2 is 8 N.
Hope this helps!
Answer:
Only two elements are liquid at standard conditions for temperature and pressure: mercury and bromine. Four more elements have melting points slightly above room temperature: francium, caesium, gallium and rubidium.
Explanation:
A reaction in which oxidation numbers change is the answer! :D
☆ Dont forget to mark brainliest ☆