Answer:
computer model
Explanation:
Computer models are cheaper to set up than alternative methods that could be used to predict what will happen in a system, ex. building a prototype. Other benefits include being able to: make alterations and quickly see the outcomes.
Water deposits soil ,sediments ,and rock by moving them to a different place .Say like a beach .The ocean is currently moving the bits of sand and (glass:sand)rock pieces and always ending up in new places.Same as a river.!!!!
Answer:
D
Explanation:
In a Helium (He) atom, the atomic structure of the atom has 2 protons, 2 electrons and 2 neutrons. For an element X to be a Helium (He) atom, it must possess 2 protons. The number of neutrons present will determine its stability either if its probably radioactive or a natural occurring inert gas.
In option 1,
We have H-2. The symbol "H" is used to denote the element hydrogen in the periodic table and hydrogen has only 1 protons and 1 neutron making its mass number 2.
Option 2,
He -2 : here in this option, we have a helium atom, but with mass number of 2 only. Judging from the formula of mass number = protons + neutrons, we already have proton as 2, hence the number of neutrons there is zero (0)
Option 3,
He - 3 : just like in option 2, the only difference here is that the mass number is 3 hence making the number of neutrons just 1.
Option 4,
He - 4 : This option met the requirements of having 2 protons and 2 neutrons making a total of 4 which corresponds to the mass number.
The amount, in mg, of CO present in the room will be 191,520 mg.
<h3>Stoichiometric problem</h3>
The concentration of the gas in the room is 5.7 x mg/cm3.
The dimension of the room is 3.5 m x 3.0 m x 3.2 m. This is equivalent to 350 cm x 300 cm x 320 cm.
We can obtain the volume of the room as:
350 x 300 x 320 = 33,600,000 cm3
The concentration is in mg/cm3, meaning that it is mass/volume.
Thus:
mass = concentration x volume = 5.7 x mg/cm3 x 33,600,000 cm3
= 191,520 mg
The mass of CO in the room is 191,520 mg
More on stoichiometric problems can be found here: brainly.com/question/14465605
#SPJ1