Answer:
Difference in the potential energy of the reactants and products
Explanation:
The products have a lower potential energy than the reactants, and the sign of ΔH is negative. In an endothermic reaction, energy is absorbed. The products have a higher potential energy than the reactants, and the sign of ΔH is positive.
Molecular Motion<span> is the speed at which molecules or atoms move dependent on temperature and state of matter.
Explanation:
</span>All molecules are<span> in constant motion. Molecules of a liquid have </span>a lot of<span> freedom of movement than those </span>in an exceedingly<span> solid. Molecules </span>in an exceedingly<span> gas have </span>the best<span> degree of motion.</span>
<span>
Heat, temperature </span>and also the<span> motion of molecules </span>area unit<span> all </span>connected<span>. Temperature </span>could be a life<span> of </span>the common K.E.<span> of the molecules </span>in an exceedingly<span> material. Heat </span>is that the<span> energy transferred between materials that have </span>completely different temperatures<span>. Increasing the temperature </span>will increase<span> the </span>travel<span> motion of molecules Energy </span>is expounded<span> to temperature by the relationship.</span>
Answer:
52.45g
Explanation:
The computation of the mass of pure acetic acid in 125mL of this solution is shown below:
The percentage of mass would be equivalent to the g of solute in each 100g of water
As we know that
density = mass ÷ volume
So,
Volume = mass ÷ density
V = 100g / 1.049 (g / ml)
V = 95.328 mL
Now In every 95,328 ml of C_2H_4O_2 there are 40g of C_2H_4O_2
i.e.
each 125ml of C_2H_4O_2 there are 52.45g
SO,
x = 40g. 125ml ÷ 95.328
x = 52.45g