Answer:
ionic bond
Explanation:
Covalent bonds are formed when two or more atoms share electrons between them. So two chlorine anions form an ionic bond with one magnesium cation for form MgCl2, a neutral chemical compound.
The molecular formula is D. C_8H_20O_4Si.
<em>Step 1</em>.Calculate the <em>empirical formula
</em>
a) Calculate the moles of each element
Moles of C= 196.01 g C × (1 mol C/12.01 g C) = 16.325 mol C
Moles of H = 41.14 g H × (1 mol H/1.008 g H) = 40.813 mol H
Moles of O = 130.56 g O × (1 mol O/16.00 g O) = 8.1650 mol O
Moles of Si = 57.29 g Si × (1 mol Si/28.085 g Si) = 2.0399 mol Si
b) Calculate the molar ratio of each element
Divide each number by the smallest number of moles and round off to an integer
C:H:O:Si = 8.0027:20.008:4.0027:1 ≈ 8:20:4:1
c) Write the empirical formula
EF = C_8H_20O_4Si
<em>Step </em>2. Calculate the <em>molecular formula</em>
EF Mass = 208.33 u
MF mass = 208.329 u
MF = (EF)_n
n = MF Mass/EF Mass = 208.329 u/208.33 u = 1.0000 ≈ 1
MF = C_8H_20O_4Si
Answer:
1. 2 M
2. 2 M
Explanation:
1. Determination of the final concentration.
Initial Volume (V₁) = 2 L
Initial concentration (C₁) = 6 M
Final volume (V₂) = 6 L
Final concentration (C₂) =?
The final concentration can be obtained as follow:
C₁V₁ = C₂V₂
6 × 2 = C₂ × 6
12 = C₂ × 6
Divide both side by 6
C₂ = 12 / 6
C₂ = 2 M
Therefore, the final concentration of the solution is 2 M
2. Determination of the final concentration.
Initial Volume (V₁) = 0.5 L
Initial concentration (C₁) = 12 M
Final volume (V₂) = 3 L
Final concentration (C₂) =?
The final concentration can be obtained as follow:
C₁V₁ = C₂V₂
12 × 0.5 = C₂ × 3
6 = C₂ × 3
Divide both side by 3
C₂ = 6 / 3
C₂ = 2 M
Therefore, the final concentration of the solution is 2 M
Answer:
The density of the liquid in beaker B is less than the that of ice.
Explanation:
Ice will float if its mass is less than the mass of the liquid it displaces.
For example, the density of ice is less than that of water.
A 10 cm³ cube of ice has a mass of about 9 g, while the mass of 10 cm³ of water is 10 g. Thus, 9 g of ice displaces 10 g of water.
The denser water displaces the lighter ice and the ice floats to the top.
If the density of the liquid is <em>less than</em> that of water, say, 8 g/cm³, the ice will displace only 8 g of the liquid. The ice will sink.
Kinetic energy has increased.
The <em>Kinetic Molecular Theory</em> of gases states that the average kinetic energy of the molecules of a gas is directly proportional to its Kelvin temperature.
Thus, if the temperature of the air in a room has increased, the average kinetic energy of its molecules has increased.