Answer:
Bot Nm
Explanation:
jdjdmxjd mdjdcj jdsdj jedidj jddj
Answer:
Options d and e
Explanation:
The pendulum which will be set in motion are those which their natural frequency is equal to the frequency of oscillation of the beam.
We can get the length of the pendulums likely to oscillate with the formula;

where g=9.8m/s
ω= 2rad/s to 4rad/sec
when ω= 2rad/sec

L = 2.45m
when ω= 4rad/sec

L = 9.8/16
L=0.6125m
L is between 0.6125m and 2.45m.
This means only pendulum lengths in this range will oscillate.Therefore pendulums with length 0.8m and 1.2m will be strongly set in motion.
Have a great day ahead
Given Information:
Length of wire = 132 cm = 1.32 m
Magnetic field = B = 1 T
Current = 2.2 A
Required Information:
(a) Torque = τ = ?
(b) Number of turns = N = ?
Answer:
(a) Torque = 0.305 N.m
(b) Number of turns = 1
Explanation:
(a) The current carrying circular loop of wire will experience a torque given by
τ = NIABsin(θ) eq. 1
Where N is the number of turns, I is the current in circular loop, A is the area of circular loop, B is the magnetic field and θ is angle between B and circular loop.
We know that area of circular loop is given by
A = πr²
where radius can be written as
r = L/2πN
So the area becomes
A = π(L/2πN)²
A = πL²/4π²N²
A = L²/4πN²
Substitute A into eq. 1
τ = NI(L²/4πN²)Bsin(θ)
τ = IL²Bsin(θ)/4πN
The maximum toque occurs when θ is 90°
τ = IL²Bsin(90)/4πN
τ = IL²B/4πN
torque will be maximum for N = 1
τ = (2.2*1.32²*1)/4π*1
τ = 0.305 N.m
(b) The required number of turns for maximum torque is
N = IL²B/4πτ
N = 2.2*1.32²*1)/4π*0.305
N = 1 turn
The parallel component is given by
F=180cos(25)=163.14N