<span>The metric
system is the oldest name for the international system of units. The answer is <u>a.
True. </u>SI unit or the international systems of units are based on seven
basic units; the meter, kilogram, second, ampere, Kelvin, candela and mole. All
of these basic units are divided into multiples by a power of ten. For example
in meters, 1 meter is equal to: 1000 millimeter, 100 centimeter, 10 decimeter,
0.1 decameter, 0.01 hectometer, 0.001 kilometer and so on and so forth.</span>
Answer:
Explanation:
Initial velocity of mailbag u = 2 m/s
acceleration downwards a = g = 9.8 m/s²
time t = 3 s
a ) final velocity v = ?
v = u + at
= 2 + 9.8 x 3
= 31.4 m /s
b )
s = ut + 1/2 g t²
s is relative displacement of mailbag
u = relative initial velocity of mailbag = 0
relative acceleration = g = 9.8 m /s²
time t = 3 s
s = 0 + 1/2 x 9.8 x 3²
= 44.1 m
relative displacement of mailbag = 44.1 m .
Answer:
t = 1.659s
Explanation:
We can use the kinematics equations to solve this questions:
v = u + at

where v = Final Velocity, u = initial velocity, a = acceleration, t = time, s = displacement
a) Given information from the question,
u =
(Convert km/h to m/s first)
a = 
s = 35m
Now we can substitute these values into the 2nd kinematics equation to find v, final velocity.

b) Now we have the final velocity, we can substitute the values into the first kinematics equation to find t , the time taken.
v = u + at
22.761 = 19.444 + 2t
2t = 22.761 - 19.444
t =
t = 1.659s
K.E.= 1/2 x MV^2 = 1/2 x 40(kg) x (25x25) =12500J
Answer:

Explanation:
mass of proton, m = 1.67 x 10^-27 kg
speed of proton, v = 350 km/s = 350,000 m/s
Momentum of proton, p = mass x speed
p = 1.67 x 10^-27 x 350000 = 5.845 x 10^-22 kg m /s
uncertainty in momentum, Δp = 0.1 % of p
Δp = 
According to the principle

where, Δx be the uncertainty in position

