Answer:
v' = 1.5 m/s
Explanation:
given,
mass of the bullet, m = 10 g
initial speed of the bullet, v = 300 m/s
final speed of the bullet after collision, v' = 300/2 = 150 m/s
Mass of the block, M = 1 Kg
initial speed of the block, u = 0 m/s
velocity of the block after collision, u' = ?
using conservation of momentum
m v + Mu = m v' + M u'
0.01 x 300 + 0 = 0.01 x 150 + 1 x v'
v' = 0.01 x 150
v' = 1.5 m/s
Speed of the block after collision is equal to v' = 1.5 m/s
Fixed volume and shape
-Particles are locked into place
Not easily compressible
-Little free space between particles
Does not flow easy
-Particles cannot move past each other
Yes it can, because −3.5 lies to the left of −0.5.
Yes it can, because −3.5 lies to the right of −0.5.
No it cannot, because −3.5 lies to the left of −0.5.
No it cannot, because −3.5 lies to the right of −0.5.
Yes it can, because −3.5 lies to the left of −0.5.
Answer: Option A.
<u>Explanation:</u>
This option has been chosen because the left of the 0 has been shaded and all the negative values lies on the left of zero. So -3.5 lies to the left of -0.5 and is in the shaded region of the number line.
In a number line, the figure -3.5 lies on the left side compared to the number -0.5 because the higher the value on the negative side of the number line, more left it would be on the number line.
Answer:
(a) 0.115 m
(b) 2.08 x 10^-5 J
Explanation:
mass of bob, m = 81 g = 0.081 kg
The equation of oscillation is given by
θ = 0.068 Cos {9.2 t + Ф}
Now by comparison
The angular velocity
ω = 9.2 rad/s
(a) 
where, L be the length of the pendulum


L = 0.115 m
(b) A = L Sinθ
A = 0.115 x Sin 0.068
A = 7.8 x 10^-3 m
Maximum kinetic energy
K = 0.5 x mω²A²
K = 0.5 x 0.081 x 9.2 x 9.2 x 7.8 x 7.8 x 10^-6
K = 2.08 x 10^-5 J
Answer:
1780
Explanation:
move decimal point to the right 3 times.