Answer:
The final speed is 5.78 m/s.
Explanation:
mass, m = 375 g = 0.375 kg
initial velocity, u = 4 m/s
Distance, s = 2.5 m
Angle, A = 30 degree
Force, F = 1.5 N
let the final velocity is v.
Use the work energy theorem
Work done = change in kinetic energy

Answer:
A) Golgi apparatus
Explanation:
B) v a c u o l e (C) m i t o c h o n d r i a ( E) cell wall
The range of frequencies of visible light in a vacuum is mathematically given as
Fmin=4.19*10^14Hz to Fmax=1*10^15Hz
<h3>What is the range of frequencies of visible light in a vacuum?</h3>
Question Parameters:
The wavelengths of visible light vary from about 300 nm to 700 nm.
Generally, the equation for the frequency is mathematically given as
F=C/\lambda
Therefore
For Fmax

Fmax=1*10^15Hz
Where

Fmin=4.19*10^14Hz
For more information on Wave
brainly.com/question/3004869
20 kg*m/s because there is 2 kg mass and 10 m/s so you can multiply.