Answer:
A temporary magnet allows the user to determine when it is magnetic.
There is no reaction.
<em>Molecular equation
:</em>
K₂CO₃(aq) + 2NH₄Cl(aq) ⟶ 2KCl(aq) + (NH₄)₂CO₃(aq)
<em>Ionic equation
:</em>
2K⁺(aq) + CO₃²⁻(aq) + 2NH₄⁺(aq) +2Cl⁻(aq) ⟶ 2K⁺(aq) + 2Cl⁻(aq) + 2NH₄⁺(aq) + CO₃²⁻(aq)
<em>Net ionic equation
:</em>
Cancel all ions that appear on both sides of the reaction arrow (underlined).
<u>2K⁺(aq)</u> + <u>CO₃²⁻(aq)</u> + <u>2NH₄⁺(aq</u>) +<u>2Cl⁻(aq)</u> ⟶ <u>2K⁺(aq)</u> + <u>2Cl⁻(aq</u>) + <u>2NH₄⁺(aq)</u> + <u>CO₃²⁻(aq)</u>
<em>All ions cancel</em>. There is no net ionic equation.
When it comes to physical changes like phase changes, there are two types of heat energy: sensible heat and latent heat. Sensible heat is the heat absorbed/released when you heat the substance but it doesn't change phase. An example would be heating lukewarm water. The substance is liquid all throughout. Latent heat, on the other hand, is the heat absorbed/released when there is a phase change. An example would be boiling water, because it changes liquid to vapor.
Hence, for freezing liquid, you use the latent heat, specifically the heat of fusion. The answer should be
2.5 g * (1 mol/18.02 g) * 6.03 kJ/mol = 0.84 kJ/mol
The answer is not in the choices. You only use Hvap if you boil water.
1)a. formation of gas
2)b.energy was transferred
3)c.substances that are used up in a reaction
Answer:
Mass = 76.176 g
Explanation:
Given data:
Mass of lead(II) chloride produced = 62.9 g
Mass of lead(II) nitrate used = ?
Solution:
Chemical equation:
Pb(NO₃)₂ + 2HCl → PbCl₂ + 2HNO₃
Number of moles of lead(II) chloride:
Number of moles = mass/molar mass
Number of moles = 62.9 g/ 278.1 g/mol
Number of moles = 0.23 mol
Now we will compare the moles of lead(II) chloride with Pb(NO₃)₂ from balance chemical equation:
PbCl₂ : Pb(NO₃)₂
1 : 1
0.23 : 0.23
Mass of Pb(NO₃)₂:
Mass = number of moles × molar mass
Mass = 0.23 mol × 331.2 g/mol
Mass = 76.176 g