Since velocity is a speed and a direction, there are only two ways for you to accelerate: change your speed or change your direction—or change both. If you're not changing your speed and you're not changing your direction, then you simply cannot be accelerating—no matter how fast you're going.
Slow-twitch muscles<span> help enable long-endurance feats such as distance running, while fast-</span>twitch muscles<span> fatigue faster but are used in powerful bursts of movements like sprinting. Hope that this can help!!!</span>
Radars are frequently used to identify distance and speed, such as how far away an object is or how fast it is moving. <span>The </span>radar<span> device can then use the change in frequency to </span>determine the speed<span> at which the </span>car<span> is moving. In laser-</span>speed<span> guns, waves of light are </span>used<span> in place of radio waves.</span>
True.
Depending how accurate the graph is plotted
Answer:
(a). The path length is 3.09 m at 30°.
(b). The path length is 188.4 m at 30 rad.
(c). The path length is 1111.5 m at 30 rev.
Explanation:
Given that,
Radius = 5.9 m
(a). Angle 
We need to calculate the angle in radian

We need to calculate the path length
Using formula of path length



(b). Angle = 30 rad
We need to calculate the path length


(c). Angle = 30 rev
We need to calculate the angle in rad


We need to calculate the path length


Hence, (a). The path length is 3.09 m at 30°.
(b). The path length is 188.4 m at 30 rad.
(c). The path length is 1111.5 m at 30 rev.