Answer:
3360 N
Explanation:
In a first-class lever, the effort force and load force are on opposite sides of the fulcrum.
The lever is 5 m long. The load force is 1.50 m from the fulcrum, so the effort force must be 3.50 m from the fulcrum.
The torques are equal:
Fr = Fr
(1440 N) (3.5 m) = F (1.5 m)
F = 3360 N
I think the correct answer from the choices listed above is option D. One advantage of using electromagnets in devices would be that electromagnets can <span>easily be turned on and off. Hope this answers the question. Have a nice day.</span>
The efficiency of an ideal Carnot heat engine can be written as:

where

is the temperature of the cold region

is the temperature of the hot region
For the engine in our problem, we have

and

, so the efficiency is
Answer:
2352645198509.9604 m/s²
Explanation:
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
M = Mass of black hole = 
= 10000+100 m
= Distance between the nose and the center of the black hole = 10000 m
The difference in the gravitational field in this system is given by

The acceleration is 2352645198509.9604 m/s²