A cl2 molecule is a diatomic molecule composed of two atoms of identical halogen - chlorine. In this case, this molecule is composed of covalent bonds in which the identical atom- molecule tells that this is also non-polar. To break the bond, energy has to be absorbed to break the intermolecular force that bound the molecule together.
The solubility product of a substance us calculated by the product of the concentration of the dissociated ions in the solution raise to the stoichiometric coefficient of the ions. Therefore, we need the dissociation reaction. For this, it will have the reaction:
PbI2 = Pb^2+ + 2I-
We solve as follows:
Ksp = [Pb2+][I-]^2 = <span>1.4 x 10-8
</span><span>1.4 x 10-8 = x(2x)^2
</span><span>1.4 x 10-8 = 4x^3
x = 1.5x10^-3 M
The molar solubility would be </span>1.5x10^-3 M.
Tabulations of chemical elements differing in their organization from the traditional seen periodic system
The answer to this would be a physical change. Physical changes are changes that affect the form of a chemical substance, but not the chemical composition itself. Hope this helped!
For the absorbance of the solution in a 1.00 cm cell at 500 nm is mathematically given as
A’ = 0.16138
<h3>What is the absorbance of the solution in a 1.00 cm cell at 500 nm?</h3>
Absorbance (A) 2 – log (%T) = 2 – log (15.6) = 0.8069
Generally, the equation for the Beer’s law is mathematically given as
A = ε*c*l
0.8069 = ε*c*(5.00 )
ε*c = 0.16138 cm-1
then for when ε*c is constant
l’ = 1.00
A’ = (0.16138 cm-1)*(1.00 cm)
A’ = 0.16138
In conclusion, the absorbance of the solution in a 1.00 cm cell at 500 nm is
A’ = 0.16138
Read more about Wavelength
brainly.com/question/3004869