Answer:
D. 4000 km
Explanation:
f = Frequency of wave that is being transmitted = 76 Hz
= Wavelength of wave that is being transmitted
v = The velocity of electromagnetic waves through air = 
Velocity of a wave is given by

Hence, the approximate wavelength of the waves is 4000 km
It’s because flourecent lights operate at higher temperatures than incadecent lights.
Answer:
The work done by the drag force is given by 29.96 J
Explanation:
Given :
Thrust force
N
Displacement
m
Mass of rocket
Kg
From work energy theorem,


Where
thrust work
gravitational work

After cutoff kinetic energy is converted into potential energy,

Put value of KE

Work done by drag force is given by,

J
Therefore, the work done by the drag force is given by 29.96 J

If the separation between the charges is increased then the magnitude of the force will increase in fact how the distance is being used in that formula.