1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NemiM [27]
2 years ago
8

Magnesium fluoride MgF2 has n = 1.37. If applied in a thin layer over an optical lens made of glass having n = 1.39, what thickn

ess should it be so that light having a wavelength of 645 nm is not reflected from the lens?
Physics
2 answers:
Elenna [48]2 years ago
7 0
SOLUTION:
We want to choose the film thickness such that destructive interference occurs between the light reflected from the air-film interface (call it wave 1) and from the film-lens interface (call it wave 2). For destructive interference to occur, the phase difference between the two waves must be an odd multiple of half-wavelengths.
You can think of the phases of the two waves as second hands on a clock; as the light travels, the hands tick-tock around the clock. Consider the clocks on the two waves in question. As both waves travel to the air-film interface, their clocks both tick-tock the same time-no phase difference. When wave 1 is reflected from the air-film boundary, its clock is set forward 30 seconds; i.e., if the hand was pointing toward 12, it's now pointing toward 6. It's set forward because the index of refraction of air is smaller than that of the film.
Now wave 1 pauses while wave two goes into and out of the film. The clock on wave 2 continues to tick as it travels in the film-tick, tock, tick, tock.... Clock 2 is set forward 30 seconds when it hits the film-lens interface because the index of refraction of the film is smaller than that of the lens. Then as it travels back through the film, its clock still continues ticking. When wave 2 gets back to the air-film interface, the two waves continue side by side, both their clocks ticking; there is no change in phase as they continue on their merry way.
So, to recap, since both clocks were shifted forward at the two different interfaces, there was no net phase shift due to reflection. There was also no phase shift as the waves travelled into and out from the air-film interface. The only phase shift occured as clock 2 ticked inside the film.
Call the thickness of the film t. Then the total distance travelled by wave 2 inside the film is 2t, if we assume the light entered pretty much normal to the interface. This total distance should equal to half the wavelength of the light in the film (for the minimum condition; it could also be 3/2, 5/2, etc., but that wouldn't be the minimum thickness) since the hand of the clock makes one revolution for each distance of one wavelength the wave travels (right?).
\begin{displaymath}
2t = \frac{\lambda_{film}}{2}.\end{displaymath}

The wavelength in the film is

\begin{displaymath}
\lambda_{film} = \frac{\lambda_{air}}{n} = \frac{565 nm}{1.38}\end{displaymath}

\begin{displaymath}
\lambda_{film} = 409 nm.\end{displaymath}

Hence, the thickness should be

\begin{displaymath}
t = \frac{\lambda_{film}}{4} = 102 nm .\end{displaymath}
algol132 years ago
3 0

so the answer is I am so confuse

You might be interested in
A 3,220 lb car enters an S-curve at A with a speed of 60 mi/hr with brakes applied to reduce the speed to 45 mi/hr at a uniform
Grace [21]

The magnitude of the total friction force exerted by the road on the tires at B will be 919.46 lb.

<h3>What is the friction force?</h3>

It is a type of opposition force acting on the surface of the body that tries to oppose the motion of the body. Its unit is Newton (N).

Mathematically, it is defined as the product of the coefficient of friction and normal reaction.

The given data in the problem is;

The weight is,W= 3,220 lb

The speed is,u= 60 mi/hr

The reducing speed is,v= 45 mi/hr

The distance traveled is,d= 300 ft

The radius of curvature of the path of the car at B is,R= 600 ft.

1 mile = 5280 ft

From the Newtons' equation of motion;

\rm v^2 = u^2 +2ad \\\\ \rm (45 \times \frac{5280}{3600} )^2 = (60 \times  \frac{5280}{3600}  )^2 +2a\times 300 \\\\

The tangential accelerations are;

\rm a_t = \frac{66^2 -88^2}{600} \\\\ \rm a_t =  -5.65 ft/sec^2 \\\\

The force is found as;

\rm \sum F = ma \\\\ \frac{3220}{32.2} \times -5.65 \\\\ F_T= 565 \ lb

The normal force  is;

\rm F_n = \frac{3220}{32.2} \times \frac{66^2}{600} \\\\ F_N =726 \ lb

The net or the total friction force exerted by the road on the tires at B. is found as;

\rm F = \sqrt{(565)^2+(726)^2} \\\ F = 919.946 \ lb

Hence, the magnitude of the total friction force exerted by the road on the tires at B will be 919.46 lb.

To learn more about the friction force, refer to the link;

brainly.com/question/1714663

#SPJ1

6 0
2 years ago
A living thing that feeds on Another living thing and may kill it eventually is called
Murljashka [212]

Answer:

(D) parasite........................

3 0
2 years ago
Finderkeepers,ismadeormodel
ankoles [38]

Answer:

model lol

Explanation:

7 0
3 years ago
A boy starts from point A and moves 5 units toward the east, then turns back and moves 3 units toward the west. What is the disp
Flura [38]
The displacement of the boy is 2 units
4 0
3 years ago
A water droplet falling in the atmosphere is spherical. Assume that as the droplet passes through a cloud, it acquires mass at a
ArbitrLikvidat [17]

Answer:

it b

Explanation:

bc A water droplet falling in the atmosphere is spherical

4 0
3 years ago
Other questions:
  • Which value is equivalent to 178 centimeters?
    15·1 answer
  • An athlete always runs before taking a jump . why?
    6·1 answer
  • What are the products in the photosynthesis equation?
    14·2 answers
  • If you walked 29752 meters in 2.00 hours what would your average speed be in m/s. Then, suppose you slow down to 3.00 m/s at the
    12·1 answer
  • 7. Choose the correct reaction type for the following.<br> 2KCl → 2K+ Cl2
    9·1 answer
  • Heliox is a helium‑oxygen mixture that may be used in scuba tanks for divers working at great depths. It is also used medically
    6·1 answer
  • Which statement about a pair of units is true? A yard is shorter than a meter. Amile is shorter than a kilometer. A foot is shor
    12·1 answer
  • In an internal combustion engine, the gas vapor/air mixture enters the cylinder during the _____ stroke. intake compression powe
    6·1 answer
  • In lab, a radiation detector was used to calculate the background radiation. The
    6·1 answer
  • A car increases its speed from 11.1 meters per second to 24.2 meters per second in 5.0 seconds. What is the average acceleration
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!